We proposed two approaches to improve Chinese word segmentation: a subword-based tagging and a confidence measure approach. We found the former achieved better performance than the existing character-based tagging, and the latter improved segmentation further by combining the former with a dictionary-based segmentation. In addition, the latter can be used to balance out-of-vocabulary rates and in-vocabulary rates. By these techniques we achieved higher F-scores in CITYU, PKU and MSR corpora than the best results from Sighan Bakeoff 2005.
We proposed a subword-based tagging for Chinese word segmentation to improve the existing character-based tagging. The subword-based tagging was implemented using the maximum entropy (MaxEnt) and the conditional random fields (CRF) methods. We found that the proposed subword-based tagging outperformed the character-based tagging in all comparative experiments. In addition, we proposed a confidence measure approach to combine the results of a dictionary-based and a subword-tagging-based segmentation. This approach can produce an ideal tradeoff between the in-vocaulary rate and out-of-vocabulary rate. Our techniques were evaluated using the test data from Sighan Bakeoff 2005. We achieved higher F-scores than the best results in three of the four corpora: PKU(0.951), CITYU(0.950) and MSR(0.971).
SUMMARYMuch natural language processing still depends on the Euclidean distance function between the two feature vectors, but the Euclidean distance suffers from severe defects as to feature weightings and feature correlations. In this paper we propose an optimal metric distance function that can be used as an alternative to the Euclidean distance, accommodating the two problems at the same time. This metric is optimal in the sense of global quadratic minimization, and can be obtained from the clusters in the training data in a supervised fashion.We have confirmed the effect of the proposed metric by the sentence retrieval, document retrieval, and K-means clustering of general vectorial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.