Virtual Adversarial Training (VAT) has shown impressive results among recently developed regularization methods called consistency regularization. VAT utilizes adversarial samples, generated by injecting perturbation in the input space, for training and thereby enhances the generalization ability of a classifier. However, such adversarial samples can be generated only within a very small area around the input data point, which limits the adversarial effectiveness of such samples. To address this problem we propose LVAT (Latent space VAT), which injects perturbation in the latent space instead of the input space. LVAT can generate adversarial samples flexibly, resulting in more adverse effect and thus more effective regularization. The latent space is built by a generative model, and in this paper we examine two different type of models: variational auto-encoder and normalizing flow, specifically Glow. We evaluated the performance of our method in both supervised and semi-supervised learning scenarios for an image classification task using SVHN and CIFAR-10 datasets. In our evaluation, we found that our method outperforms VAT and other state-of-the-art methods.
Out-of-distribution (OOD) detection is crucial to safety-critical machine learning applications and has been extensively studied. While recent studies have predominantly focused on classifier-based methods, research on deep generative model (DGM)-based methods have lagged relatively. This disparity may be attributed to a perplexing phenomenon: DGMs often assign higher likelihoods to unknown OOD inputs than to their known training data. This paper focuses on explaining the underlying mechanism of this phenomenon. We propose a hypothesis that less complex images concentrate in high-density regions in the latent space, resulting in a higher likelihood assignment in the Normalizing Flow (NF). We experimentally demonstrate its validity for five NF architectures, concluding that their likelihood is untrustworthy. Additionally, we show that this problem can be alleviated by treating image complexity as an independent variable. Finally, we provide evidence of the potential applicability of our hypothesis in another DGM, PixelCNN++.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.