E-cadherin is a key cell–cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin–based AJs.
Extension of neurites requires the SNARE-dependent fusion of plasmalemmal precursor vesicles with the plasma membrane of growth cones. Here, we show that tomosyn localizes at the palm of growth cones and inhibits the fusion of the vesicles there, thus promoting transport of the vesicles to the plasma membrane of the leading edges of growth cones. Tomosyn localizes because ROCK activated by Rho small G protein phosphorylates syntaxin-1, which increases the affinity of syntaxin-1 for tomosyn and forms a stable complex with tomosyn, resulting in inhibition of the formation of the SNARE complex. In retraction of neurites, tomosyn localizes all over the edges of the neurites and inhibits fusion of the vesicles with the plasma membrane. Thus, tomosyn demarcates the plasma membrane by binding to syntaxin-1 phosphorylated by ROCK, and thereby regulates extension and retraction of neurites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.