Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared.
Background: Propionate is widely used as a preservative in the food and animal feed industries. Propionate is currently produced by petrochemical processes, and fermentative production of propionate remains challenging.
Methods and Results:In this study, a synthetic propionate pathway was constructed in the budding yeast Saccharomyces cerevisiae, for propionate production under aerobic conditions. Through expression of tdcB and aldH from Escherichia coli and kivD from Lactococcus lactis, L-threonine was converted to propionate via 2-ketobutyrate and propionaldehyde. The resulting yeast aerobically produced 0.21 g L -1 propionate from glucose in a shake flask. Subsequent overexpression of pathway genes and elimination of competing pathways increased propionate production to 0.37 g L -1 . To further increase propionate production, carbon flux was pulled into the propionate pathway by weakened expression of pyruvate kinase (PYK1), together with overexpression of phosphoenolpyruvate carboxylase (ppc). The final propionate production reached 1.05 g L -1 during fed-batch fermentation in a fermenter.
Conclusions and Implications:In this work, a yeast cell factory was constructed using synthetic biology and metabolic engineering strategies to enable propionate production under aerobic conditions. Our study demonstrates engineered S. cerevisiae as a promising alternative for the production of propionate and its derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.