Coastal zones constitute one of the most heavily populated and developed land zones in the world. Despite the utility and economic benefits that coasts provide, there is no reliable global-scale assessment of historical shoreline change trends. Here, via the use of freely available optical satellite images captured since 1984, in conjunction with sophisticated image interrogation and analysis methods, we present a global-scale assessment of the occurrence of sandy beaches and rates of shoreline change therein. Applying pixel-based supervised classification, we found that 31% of the world’s ice-free shoreline are sandy. The application of an automated shoreline detection method to the sandy shorelines thus identified resulted in a global dataset of shoreline change rates for the 33 year period 1984–2016. Analysis of the satellite derived shoreline data indicates that 24% of the world’s sandy beaches are eroding at rates exceeding 0.5 m/yr, while 28% are accreting and 48% are stable. The majority of the sandy shorelines in marine protected areas are eroding, raising cause for serious concern.
Accurate maps of surface water are essential for many environmental applications. Surface water maps can be generated by combining measurements from multiple sources. Precise estimation of surface water using satellite imagery remains a challenging task due to the sensor limitations, complex land cover, topography, and atmospheric conditions. As a complementary dataset, in the case of hilly landscapes, a drainage network can be extracted from high-resolution digital elevation models. Additionally, Volunteered Geographic Information (VGI) initiatives, such as OpenStreetMap, can also be used to produce high-resolution surface water masks. In this study, we derive a high-resolution water mask using Landsat 8 imagery and OpenStreetMap as well as (potential) a drainage network using 30 m SRTM. Our approach to derive a surface water mask from Landsat 8 imagery comprises the use of a lower 15% percentile of Landsat 8 Top of Atmosphere (TOA) reflectance from 2013 to 2015. We introduce a new non-parametric unsupervised method based on the Canny edge filter and Otsu thresholding to detect water in flat areas. For hilly areas, the method is extended with an additional supervised classification step used to refine the water mask. We applied the method across the Murray-Darling basin, Australia. Differences between our new Landsat-based water mask and the OpenStreetMap water mask regarding positional differences along the rivers and overall coverage were analyzed. Our results show that about 50% of the OpenStreetMap linear water features can be confirmed using the water mask extracted from Landsat 8 imagery and the drainage network derived from SRTM. We also show that the observed distances between river features derived from OpenStreetMap and Landsat 8 are mostly smaller than 60 m. The differences between the new water mask and SRTM-based linear features and hilly areas are slightly larger (110 m). The overall agreement between OpenStreetMap and Landsat 8 water masks is about 30%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.