SummaryThe radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue.
Although microglial activation occurs in inflammatory, degenerative and neoplastic central nervous system (CNS) disorders, its role in pathogenesis is unclear. We studied this question by generating CD11b-HSVTK transgenic mice, which express herpes simplex thymidine kinase in macrophages and microglia. Ganciclovir treatment of organotypic brain slice cultures derived from CD11b-HSVTK mice abolished microglial release of nitrite, proinflammatory cytokines and chemokines. Systemic ganciclovir administration to CD11b-HSVTK mice elicited hematopoietic toxicity, which was prevented by transfer of wild-type bone marrow. In bone marrow chimeras, ganciclovir blocked microglial activation in the facial nucleus upon axotomy and repressed the development of experimental autoimmune encephalomyelitis. We conclude that microglial paralysis inhibits the development and maintenance of inflammatory CNS lesions. The microglial compartment thus provides a potential therapeutic target in inflammatory CNS disorders. These results validate CD11b-HSVTK mice as a tool to study the impact of microglial activation on CNS diseases in vivo.
Nerve injury triggers numerous changes in the injured neurons and surrounding nonneuronal cells that ultimately result in successful target reinnervation or cell death. c-Jun is a component of the heterodimeric AP-1 transcription factor, and c-Jun is highly expressed in response to neuronal trauma. Here we have investigated the role of c-jun during axonal regeneration using mice lacking c-jun in the central nervous system. After transection of the facial nerve, the absence of c-Jun caused severe defects in several aspects of the axonal response, including perineuronal sprouting, lymphocyte recruitment, and microglial activation. c-Jun-deficient motorneurons were atrophic, resistant to axotomy-induced cell death, and showed reduced target muscle reinnervation. Expression of CD44, galanin, and alpha7beta1 integrin, molecules known to be involved in regeneration, was greatly impaired, suggesting a mechanism for c-Jun-mediated axonal growth. Taken together, our results identify c-Jun as an important regulator of axonal regeneration in the injured central nervous system.
Although the CNS is an established immune-privileged site, it is under surveillance by the immune system, particularly under pathological conditions. In the current study we examined the lymphocyte infiltration, a key component of this neuroimmune surveillance, into the axotomized facial motor nucleus and analyzed the changes in proinflammatory cytokines and the blood-brain barrier. Peripheral nerve transection led to a rapid influx of CD3-, CD11a (alphaL, LFA1alpha)- and CD44-immunoreactive T-cells into the axotomized mouse facial motor nucleus, with a first, low-level plateau 2-4 d after injury, and a second, much stronger increase at 14 d. These T-cells frequently formed aggregates and exhibited typical cleaved lymphocyte nuclei at the EM level. Immunohistochemical colocalization with thrombospondin (TSP), a marker for phagocytotic microglia, revealed aggregation of the T-cells around microglia removing neuronal debris. The massive influx of lymphocytes at day 14 was also accompanied by the synthesis of mRNA encoding IL1beta, TNFalpha, and IFN-gamma. There was no infiltration by the neutrophil granulocytes, and the intravenous injection of horseradish peroxidase also showed an intact blood-brain barrier. However, mice with severe combined immunodeficiency (SCID), which lack differentiated T- and B-cells, still exhibited infiltration with CD11a-positive cells. These CD11a-positive cells also aggregated around phagocytotic microglial nodules. In summary, there is a site-selective infiltration of activated T-cells into the mouse CNS during the retrograde reaction to axotomy. The striking aggregation of these lymphocytes around neuronal debris and phagocytotic microglia suggests an important role for the immune surveillance during neuronal cell death in the injured nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.