Целью исследования является разработка ориентированного на применение суперкомпьютеров логического метода (метода булевых ограничений) и сервис-ориентированной технологии создания и применения компьютерной системы для качественного исследования динамики поведения траекторий автономных двоичных динамических систем на конечном интервале времени. Актуальность темы подтверждается непрерывно возрастающим спектром приложений двоичных моделей в научных и прикладных исследованиях, а также необходимостью качественного анализа таких моделей с большой размерностью вектора состояний. Приведена математическая модель автономной двоичной системы на конечном интервале времени и эквивалентное этой системе булево уравнение. Спецификацию динамического свойства предлагается записывать на языке логики предикатов с использованием ограниченных кванторов существования и всеобщности. Получены булевы уравнения поиска равновесных состояний и циклов двоичной системы и условия их изолированности. Специфицированы основные свойства типа достижимости (достижимость, безопасность, одновременная достижимость, достижимость при фазовых ограничениях, притяжение, связность, тотальная достижимость). Для каждого свойства построена его модель в виде булевого ограничения (булева уравнения или квантифицированной булевой формулы), удовлетворяющая логической спецификации свойства и уравнениям динамики системы. Таким образом, проверка выполнимости разнообразных свойств поведения траекторий автономных двоичных динамических систем на конечном интервале времени сведена к задаче выполнимости булевых ограничений с использованием современных SAT и TQBF решателей. Приведен демонстрационный пример использования этой технологии для проверки выполнимости некоторых из приведенных ранее свойств. В заключении перечислены основные достоинства метода булевых ограничений, особенности его программной реализации в рамках сервис-ориентированного подхода и обозначены направления дальнейшего развития метода для других классов двоичных динамических систем. Ключевые слова: двоичная динамическая система, динамическое свойство, качественный анализ, булевы ограничения, задача булевой выполнимости
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.