In current systems, memory accesses to a DRAM chip must obey a set of minimum latency restrictions specified in the DRAM standard. Such timing parameters exist to guarantee reliable operation. When deciding the timing parameters, DRAM manufacturers incorporate a very large margin as a provision against two worst-case scenarios. First, due to process variation, some outlier chips are much slower than others and cannot be operated as fast. Second, chips become slower at higher temperatures, and all chips need to operate reliably at the highest supported (i.e., worst-case) DRAM temperature (85• C). In this paper, we show that typical DRAM chips operating at typical temperatures (e.g., 55• C) are capable of providing a much smaller access latency, but are nevertheless forced to operate at the largest latency of the worst-case.Our goal in this paper is to exploit the extra margin that is built into the DRAM timing parameters to improve performance. Using an FPGA-based testing platform, we first characterize the extra margin for 115 DRAM modules from three major manufacturers. Our results demonstrate that it is possible to reduce four of the most critical timing parameters by a minimum/maximum of 17.3%/54.8% at 55• C without sacrificing correctness. Based on this characterization, we propose Adaptive-Latency DRAM (AL-DRAM), a mechanism that adaptively reduces the timing parameters for DRAM modules based on the current operating condition. AL-DRAM does not require any changes to the DRAM chip or its interface.We evaluate AL-DRAM on a real system that allows us to reconfigure the timing parameters at runtime. We show that AL-DRAM improves the performance of memory-intensive workloads by an average of 14% without introducing any errors. We discuss and show why AL-DRAM does not compromise reliability. We conclude that dynamically optimizing the DRAM timing parameters can reliably improve system performance.
We present a simple and efficient algorithm, Shifted Hamming Distance (SHD), which accelerates the alignment verification procedure in read mapping, by quickly filtering out error-abundant sequence pairs using bit-parallel and SIMD-parallel operations. SHD only filters string pairs that contain more errors than a user-defined threshold, making it fully comprehensive. It also maintains high accuracy with moderate error threshold (up to 5% of the string length) while achieving a 3-fold speedup over the best previous algorithm (Gene Myers's bit-vector algorithm). SHD is compatible with all mappers that perform sequence alignment for verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.