Summary The rice lysin‐motif (LysM) receptor‐like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short‐chain chitin oligomers (Myc‐COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca2+) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS‐YC2.60 was used to monitor nuclear Ca2+ signaling following root treatment with either crude fungal exudates or purified Myc‐COs. Compared with wild‐type rice, Ca2+ spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor‐like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc‐COs. These findings provide direct evidence that the bi‐functional OsCERK1 plays a central role in perceiving short‐chain Myc‐CO signals and activating the downstream conserved symbiotic signal transduction pathway.
During the establishment of arbuscular mycorrhizal (AM) symbiosis, the fungus and the host plant exchange chemical signals that are crucial to reciprocal recognition. Short-chain chitin oligomers (CO) released by AM fungi are known to trigger symbiotic signaling in all host plant species tested. Here we applied exogenous CO, derived from crustacean exoskeleton, to pot-grown Medicago truncatula inoculated with the AM fungus Funneliformis mosseae and investigated root colonization, plant gene regulation and biomass production. CO treatment strongly promoted AM colonization with significant increases in arbuscule development, biomass production and photosynthetic surface compared to untreated mycorrhizal plants. Gene expression analyses indicated that CO treatment anticipated the expression of MtBCP and MtPT4 plant symbiotic markers, during the first two weeks post inoculation. Altogether, our results provide evidence that plant treatment with symbiotic fungal elicitors, anticipated and enhanced AM development, encouraging the use of CO to promote AM establishment in sustainable agricultural practices.
Arbuscular mycorrhizas (AMs) between plants and soil fungi are widespread symbioses with a major role in soil nutrient uptake. In this study we investigated the induction of root cortical cell division during AM colonization by combining morphometric and gene expression analyses with promoter activation and protein localization studies of the cell-plate-associated exocytic marker TPLATE. Our results show that TPLATE promoter is activated in colonized cells of the root cortex where we also observed the appearance of cells that are half the size of the surrounding cells. Furthermore, TPLATE-green fluorescent protein recruitment to developing cell plates highlighted ectopic cell division events in the inner root cortex during early AM colonization. Lastly, transcripts of TPLATE, KNOLLE and Cyclinlike 1 (CYC1) are all upregulated in the same context, alongside endocytic markers Adaptor-Related Protein complex 2 alpha 1 subunit (AP2A1) and Clathrin Heavy Chain 2 (CHC2), known to be active during cell plate formation. This pattern of gene expression was recorded in wild-type Medicago truncatula roots, but not in a common symbiotic signalling pathway mutant where fungal colonization is blocked at the epidermal level. Altogether, these results suggest the activation of cell-division-related mechanisms by AM hosts during the accommodation of the symbiotic fungus.
Summary The intracellular accommodation of arbuscular mycorrhizal (AM) fungi is a paradigmatic feature of this plant symbiosis that depends on the activation of a dedicated signaling pathway and the extensive reprogramming of host cells, including striking changes in nuclear size and transcriptional activity. By combining targeted sampling of early root colonization sites, detailed confocal imaging, flow cytometry and gene expression analyses, we demonstrate that local, recursive events of endoreduplication are triggered in the Medicago truncatula root cortex during AM colonization. AM colonization induces an increase in ploidy levels and the activation of endocycle specific markers. This response anticipates the progression of fungal colonization and is limited to arbusculated and neighboring cells in the cortical tissue. Furthermore, endoreduplication is not induced in M. truncatula mutants for symbiotic signaling pathway genes. On this basis, we propose endoreduplication as part of the host cell prepenetration responses that anticipate AM fungal accommodation in the root cortex.
Psychological stress activates catecholamine production, determines oxidation processes, and alters the lipid barrier functions in the skin. Scientific evidence associated with the detoxifying effect of fruits and vegetables, the growing awareness of the long-term issues related to the use of chemical-filled cosmetics, the aging of the population, and the increase in living standards are the factors responsible for the growth of food-derived ingredients in the cosmetics market. A Ficus carica cell suspension culture extract (FcHEx) was tested in vitro (on keratinocytes cells) and in vivo to evaluate its ability to manage the stress-hormone-induced damage in skin. The FcHEx reduced the epinephrine (−43% and −24% at the concentrations of 0.002% and 0.006%, respectively), interleukin 6 (−38% and −36% at the concentrations of 0.002% and 0.006%, respectively), lipid peroxide (−25%), and protein carbonylation (−50%) productions; FcHEx also induced ceramide synthesis (+150%) and ameliorated the lipid barrier performance. The in vivo experiments confirmed the in vitro test results. Transepidermal water loss (TEWL; −12.2%), sebum flow (−46.6% after two weeks and −73.8% after four weeks; on the forehead −56.4% after two weeks and −80.1% after four weeks), and skin lightness (+1.9% after two weeks and +2.7% after four weeks) defined the extract’s effects on the skin barrier. The extract of the Ficus carica cell suspension cultures reduced the transepidermal water loss, the sebum production, the desquamation, and facial skin turning to a pale color from acute stress, suggesting its role as an ingredient to fight the signs of psychological stress in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.