In this paper, we extend and calibrate with Italian data the Agent-based model of the real estate sector described in Baptista et al., 2016. We design a novel calibration methodology that is built on a multivariate moment-based measure and a set of three search algorithms: a low discrepancy series, a machine learning surrogate and a genetic algorithm. The calibrated and validated model is then used to evaluate the effects of three hypothetical borrower-based macroprudential policies: an 80 per cent loan-to-value cap, a 30 per cent cap on the loan-service-to-income ratio and a combination of both policies. We find that, within our framework, these policy interventions tend to slow down the credit cycle and reduce the probability of defaults on mortgages. However, with respect to the Italian housing market, we only find very small effects over a five-year horizon on both property prices and mortgage defaults. This latter result is consistent with the view that the Italian household sector is financially sound. Finally, we find that restrictive policies lead to a shift in demand toward lower quality dwellings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.