In the early universe, neutrinos are slightly coupled when electron-positron
pairs annihilate transferring their entropy to photons. This process originates
non-thermal distortions on the neutrino spectra which depend on neutrino
flavour, larger for nu_e than for nu_mu or nu_tau. We study the effect of
three-neutrino flavour oscillations on the process of neutrino decoupling by
solving the momentum-dependent kinetic equations for the neutrino spectra. We
find that oscillations do not essentially modify the total change in the
neutrino energy density, giving N_eff=3.046 in terms of the effective number of
neutrinos, while the small effect over the production of primordial 4He is
increased by O(20%), up to 2.1 x 10^{-4}. These results are stable within the
presently favoured region of neutrino mixing parameters.Comment: 18 pages, 2 figure
We present an up-to-date review of Big Bang Nucleosynthesis (BBN). We discuss the main improvements which have been achieved in the past two decades on the overall theoretical framework, summarize the impact of new experimental results on nuclear reaction rates, and critically re-examine the astrophysical determinations of light nuclei abundances. We report then on how BBN can be used as a powerful test of new physics, constraining a wide range of ideas and theoretical models of fundamental interactions beyond the standard model of strong and electroweak forces and Einstein's general relativity.
The neutrino energy density of the Universe can be conveniently parametrized in terms of the so-called effective number of neutrinos, N eff ν . This parameter enters in several cosmological observables. In particular it is an important input in those numerical codes, like CMBFAST, which are used to study the Cosmic Microwave Background anisotropy spectrum. By studying the neutrino decoupling with Boltzmann equations, one can show that this quantity differs from the number of massless neutrino species for an additional contribution due to a partial heating of neutrinos during the e ± annihilations, leading to non thermal features in their final distributions. In this paper we review the different results obtained in the literature and perform a new analysis which takes into account, in a fully consistent way, the QED corrections at finite temperature to the photon and e ± plasma equation of state. The value found for three massless active neutrinos is N eff ν = 3.0395, in perfect agreement with the recommended value used in CMBFAST, N eff ν = 3.04. We also discuss the case of additional relativistic relics and massive active neutrinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.