This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
For a team of heterogeneous robots executing multiple tasks, we propose a novel algorithm to optimally allocate tasks to robots while accounting for their different capabilities. Motivated by the need that robot teams have in many real-world applications of remaining operational for long periods of time, we allow each robot to choose tasks taking into account the energy consumed by executing them, besides the global specifications on the task allocation. The tasks are encoded as constraints in an energy minimization problem solved at each point in time by each robot. The prioritization of a task over others -effectively signifying the allocation of the task to that particular robot -occurs via the introduction of slack variables in the task constraints. Moreover, the suitabilities of certain robots towards certain tasks are also taken into account to generate a task allocation algorithm for a team of robots with heterogeneous capabilities. The efficacy of the developed approach is demonstrated both in simulation and on a team of real robots. This work was sponsored by ARL DCIST CRA W911NF-17-2-0181.
This paper presents a safe learning framework that employs an adaptive model learning algorithm together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique. We use the learned model in combination with control barrier certificates which constrain policies (feedback controllers) in order to maintain safety, which refers to avoiding particular undesirable regions of the state space. Under certain conditions, recovery of safety in the sense of Lyapunov stability after violations of safety due to the nonstationarity is guaranteed. In addition, we reformulate an action-value function approximation to make any kernel-based nonlinear function estimation method applicable to our adaptive learning framework. Lastly, solutions to the barrier-certified policy optimization are guaranteed to be globally optimal, ensuring the greedy policy improvement under mild conditions. The resulting framework is validated via simulations of a quadrotor, which has previously been used under stationarity assumptions in the safe learnings literature, and is then tested on a real robot, the brushbot, whose dynamics is unknown, highly complex and nonstationary.Index Terms-Safe learning, control barrier certificate, sparse optimization, kernel adaptive filter, brushbot
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.