We define a new class of languages defined by multi-
We show that the bounded context-switching reachability problem for concurrent finite systems communicating using unbounded FIFO queues is decidable, where in each context a process reads from only one queue (but is allowed to write onto all other queues). Our result also holds when individual processes are finite-state recursive programs provided a process dequeues messages only when its local stack is empty. We then proceed to classify architectures that admit a decidable (unbounded context switching) reachability problem, using the decidability of bounded context switching. We show that the precise class of decidable architectures for recursive programs are the forest architectures, while the decidable architectures for non-recursive programs are those that do not have an undirected cycle.
Today, Role Based Access Control (RBAC) is the de facto model used for advanced access control, and is widely deployed in diverse enterprises of all sizes. Several extensions to the authorization as well as the administrative models for RBAC have been adopted in recent years. In this paper, we consider the temporal extension of RBAC (TRBAC), and develop safety analysis techniques for it. Safety analysis is essential for understanding the implications of security policies both at the stage of specification and modification. Towards this end, in this paper, we first define an administrative model for TRBAC. Our strategy for performing safety analysis is to appropriately decompose the TRBAC analysis problem into multiple subproblems similar to RBAC. Along with making the analysis simpler, this enables us to leverage and adapt existing analysis techniques developed for traditional RBAC. We have adapted and experimented with employing two state of the art analysis approaches developed for RBAC as well as tools developed for software testing. Our results show that our approach is both feasible and flexible.
Abstract. We consider the verification of parameterized Boolean programs-abstractions of shared-memory concurrent programs with an unbounded number of threads. We propose that such programs can be model-checked by iteratively considering the program under k roundrobin schedules, for increasing values of k, using a novel compositional construct called linear interfaces that summarize the effect of a block of threads in a k round schedule. We also develop a game-theoretic sound technique to show that k rounds of schedule suffice to explore the entire search-space, which allows us to prove a parameterized program entirely correct. We implement a symbolic model-checker, and report on experiments verifying parameterized predicate abstractions of Linux device drivers interacting with a kernel to show the efficacy of our technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.