Abstract-Software-based techniques offer several advantages to increase the reliability of processor-based systems at very low cost, but they cause performance degradation and an increase of the code size. To meet constraints in performance and memory, we propose SETA, a new control-flow software-only technique that uses assertions to detect errors affecting the program flow. SETA is an independent technique, but it was conceived to work together with previously proposed data-flow techniques that aim at reducing performance and memory overheads. Thus, SETA is combined with such data-flow techniques and submitted to a fault injection campaign. Simulation and neutron induced SEE tests show high fault coverage at performance and memory overheads inferior to the state-of-the-art.
This work is a survey on approximate computing and its impact on fault tolerance, especially for safety-critical applications. It presents a multitude of approximation methodologies, which are typically applied at software, architecture, and circuit level. Those methodologies are discussed and compared on all their possible levels of implementations (some techniques are applied at more than one level). Approximation is also presented as a means to provide fault tolerance and high reliability: Traditional error masking techniques, such as triple modular redundancy, can be approximated and thus have their implementation and execution time costs reduced compared to the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.