We computationally investigate the hydrogen storage properties of C12 carbyne structure decorated with one and up to six calcium (Ca) atoms adsorbed to outer surface. The calculations are carried out by density functional theory DFT with the generalized gradient approximation PW91 (Perdew and Wang) as implemented in the modeling and simulation Materials Studio software. Dmol3 is used to calculate, total energies, charge density HOMO-LUMO and Mulliken population analysis. Based on these results, up to six H2 molecules per Ca atom can be physisorbed with an average binding energy of 0.1272 eV per H2 molecule. The study is extended to a system with six calcium atoms, which can adsorb up to 36 H2 molecules. This leads to 15.87 weight percentage (wt %) for the gravimetric hydrogen storage capacity. According to these results, the calcium-coated carbyne C12 structure is a good candidate for hydrogen storage with application to fuel cells.
This article reports on the preparation of iron nanoparticles (FeNPs) supported in chitosan beads (Chi-EDGE-Fe) for removing aldrin from aqueous solutions. The FeNPs and Chi-EDGE-Fe beads were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and the Mössbauer spectroscopy (MS) techniques. TEM, XRD, and MS showed that the FeNPs had core-shell structures consisting of a core of either Fe0 or Fe2B and a shell of magnetite. Furthermore, SEM images showed that Chi-EDGE-Fe beads were spherical with irregular surfaces and certain degrees of roughness and porosity, whilst the sorbent mean pore size was 204 nm, and the occluded iron nanoparticles in the chitosan material had diameters of 70 nm and formed agglomerates. The sorbent beads consisted of carbon, oxygen, chlorine, aluminum, silicon, and iron according to the SEM-EDS analysis. Functional groups such as O-H, C-H, -CH2, N-H, C-O, C-OH, and Fe-OH were detected in the FTIR spectra. In addition, a characteristic band appeared at about 1700 cm−1 after the sorption process involving aldrin. MS also showed that the iron nanoparticles in the beads probably oxidized into NPs of α-Fe2O3 as a result of the supporting process. The isotherm of the aldrin removal followed the Langmuir–Freundlich model and presented a maximum adsorption capacity of 74.84 mg/g, demonstrating that chitosan-Fe beads are promising sorbents for the removal of toxic pollutants in aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.