Hemicelluloses are amorphous polymers of sugar molecules that make up a major fraction of lignocellulosic biomasses. They have applications in the bioenergy, textile, mining, cosmetic, and pharmaceutical industries. Industrial use of hemicellulose often requires that the polymer be hydrolyzed into constituent oligomers and monomers. Traditional models of hemicellulose degradation are kinetic, and usually only appropriate for limited operating regimes and specific species. The study of hemicellulose hydrolysis has yielded substantial data in the literature, enabling a diverse data set to be collected for general and widely applicable machine learning models. In this paper, a dataset containing 1955 experimental data points on batch hemicellulose hydrolysis of hardwood was collected from 71 published papers dated from 1985 to 2019. Three machine learning models (ridge regression, support vector regression and artificial neural networks) are assessed on their ability to predict xylose yield and compared to a kinetic model. Although the performance of ridge regression was unsatisfactory, both support vector regression and artificial neural networks outperformed the simple kinetic model. The artificial neural network outperformed support vector regression, reducing the mean absolute error in predicting soluble xylose yield of test data to 6.18%. The results suggest that machine learning models trained on historical data may be used to supplement experimental data, reducing the number of experiments needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.