Nickel is a vital strategic metal resource with commodity and financial attributes simultaneously, whose price fluctuation will affect the decision-making of stakeholders. Therefore, an effective trend forecast of nickel price is of great reference for the risk management of the nickel market’s participants; yet, traditional forecast methods are defective in prediction accuracy and applicability. Therefore, a prediction model of nickel metal price is proposed based on improved particle swarm optimization algorithm (PSO) combined with long-short-term memory (LSTM) neural networks, for higher reliability. This article introduces a nonlinear decreasing assignment method and sine function to improve the inertia weight and learning factor of PSO, respectively, and then uses the improved PSO algorithm to optimize the parameters of LSTM. Nickel metal’s closing prices in London Metal Exchange are sampled for empirical analysis, and the improved PSO-LSTM model is compared with the conventional LSTM and the integrated moving average autoregressive model (ARIMA). The results show that compared with the standard PSO, the improved PSO has a faster convergence rate and can improve the prediction accuracy of the LSTM model effectively. In addition, compared with the conventional LSTM model and the integrated moving average autoregressive (ARIMA) model, the prediction error of the LSTM model optimized by the improved PSO is reduced by 9% and 13%, respectively, which has high reliability and can provide valuable guidance for relevant managers.
The identification and classification of faults in chemical processes can provide decision basis for equipment maintenance personnel to ensure the safe operation of the production process. In this paper, we combine long short-term memory neural network (LSTM) with convolutional neural network (CNN) and propose a new fault diagnosis method based on multichannel LSTM-CNN (MCLSTM-CNN). The primary methodology here includes three aspects. In the initial state, the fault data are input into the LSTM to obtain the output of the hidden layer, which stores the relevant temporal and spatial domain information. Due to the diversity of data features, convolutional kernels with different sizes are utilized to form multiple channels to extract the output characteristics of the hidden layer simultaneously. Finally, the fault data are classified by fully connected layers. The Tennessee Eastman (TE) chemical process is used for experimental analysis, and the MCLSTM-CNN model is compared with the LSTM-CNN, LSTM, CNN, RF and KPCA + SVM models. The experimental results show that the MCLSTM-CNN model has higher diagnostic accuracy, and the fault classification results are superior to other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.