Background and Aims The 7α-dehydroxylation of primary bile acids (BAs), chenodeoxycholic (CDCA) and cholic acid (CA) into the secondary BAs, lithocholic (LCA) and deoxycholic acid (DCA) is a key function of the gut microbiota. We aimed to study the linkage between fecal BAs and gut microbiota in cirrhosis since this could help understand cirrhosis progression. Methods Fecal microbiota were analyzed by culture-independent multitagged-pyrosequencing, fecal BAs using HPLC and serum BAs using LC-MS in controls, early (Child A), and advanced cirrhotics(Child B/C). A subgroup of early cirrhotics underwent BA and microbiota analysis before/after eight weeks of rifaximin. Results Cross-sectional: 47 cirrhotics(24 advanced) and 14 controls were included. In feces, advanced cirrhotics had the lowest total, secondary, secondary/primary BA ratios, and highest primary BAs compared to early cirrhotics and controls. Secondary fecal BAs were detectable in all controls but in a significantly lower proportion of cirrhotics (p<0.002). Serum primary BAs were higher in advanced cirrhotics compared to the rest. Cirrhotics, compared to controls, had a higher Enterobacteriaceae (potentially pathogenic) but lower Lachonospiraceae, Ruminococcaceae and Blautia (7α-dehydroxylating bacteria) abundance. CDCA was positively correlated with Enterobacteriaceae(r=0.57, p<0.008) while Ruminococcaceae were positively correlated with DCA(r=0.4, p<0.05). A positive correlation between Ruminococcaceae and DCA/CA (r=0.82, p<0.012) and Blautia with LCA/CDCA (r=0.61, p<0.03) was also seen. Prospective study: Post-rifaximin, six early cirrhotics had reduction in Veillonellaceae and in the secondary/primary BA ratios. Conclusions Cirrhosis, especially advanced disease, is associated with a decreased conversion of primary to secondary fecal BAs which is linked with abundance of key gut microbiome taxa.
Summary Background Safety of individual probiotic strains approved under Investigational New Drug (IND) policies in cirrhosis with minimal hepatic encephalopathy (MHE) is not clear. Aim The primary aim of this phase I study was to evaluate the safety, tolerability of probiotic Lactobacillus GG (LGG) compared to placebo while secondary ones were to explore its mechanism of action using cognitive, microbiome, metabolome and endotoxin analysis in MHE patients. Methods Cirrhotic patients with MHE patients were randomized 1:1 into LGG or placebo BID after being prescribed a standard diet and multi-vitamin regimen and were followed for 8 weeks. Serum, urine and stool samples were collected at baseline and study-end. Safety was assessed at weeks 4 and 8. Endotoxin and systemic inflammation, microbiome using multi-tagged pyrosequencing, serum/urine metabolome were analyzed between groups using correlation networks. Results 30 MHE patients (14 LGG and 16 placebo) completed the study without any differences in serious adverse events. However, self-limited diarrhea was more frequent in LGG patients. A standard diet was maintained and LGG batches were comparable throughout. Only in the LGG-randomized group, endotoxemia and TNF-α decreased, microbiome changed (reduced Enterobacteriaceae and increased Clostridiales Incertae Sedis XIV and Lachnospiraceae relative abundance) with changes in metabolite/microbiome correlations pertaining to amino acid, vitamin and secondary BA metabolism. No change in cognition was found. Conclusions In this phase I study, LGG is safe and well-tolerated in cirrhosis and is associated with a reduction in endotoxemia and dysbiosis.
Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and CurrAlc underwent ileal and sigmoid colonic biopsies on which mRNA expression of TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (Cox-2) were performed. One hundred three patients (19 healthy, 6 noncirrhotic drinkers, 10 CurrAlc, 38 AbsAlc, and 30 NAlc, age 56 yr, median MELD: 10.5) were included. Five each of healthy, CurrAlc, and NAlc underwent ileal/colonic biopsies. Endotoxin, serum-conjugated DCA and stool total BAs, and secondary-to-primary BA ratios were highest in current drinkers. On biopsies, a significantly higher mRNA expression of TNF-α, IL-1β, IL-6, and Cox-2 in colon but not ileum was seen in CurrAlc compared with NAlc and controls. Active alcohol use in cirrhosis is associated with a significant increase in the secondary BA formation compared with abstinent alcoholic cirrhotics and nonalcoholic cirrhotics. This increase in secondary BAs is associated with a significant increase in expression of inflammatory cytokines in colonic mucosa but not ileal mucosa, which may contribute to alcohol-induced gut barrier injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.