This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.
Remote sensing technologies can accurately capture environmental characteristics, and together with environmental modeling approaches, help to predict climate-sensitive infectious disease outbreaks. Brucellosis remains rampant worldwide in both domesticated animals and humans. This study used human brucellosis (HB) as a test case to identify important environmental determinants of the disease and predict its outbreaks. A novel artificial neural network (ANN) model was developed, using annual county-level numbers of HB cases and data on 37 environmental variables, potentially associated with HB in Inner Mongolia, China. Data from 2006 to 2008 were used to train, validate and test the model, while data for 2009-2010 were used to assess the model's performance. The Enhanced Vegetation Index was identified as the most important predictor of HB incidence, followed by land surface temperature and other temperature-and precipitation-related variables. The suitable ecological niche of HB was modeled based on these predictors. Model estimates were found to be in good agreement with reported numbers of HB cases in both the model development and assessment phases. The study suggests that HB outbreaks may be predicted, with a reasonable degree of accuracy, using the ANN model and environmental variables obtained from satellite data. The study deepened the understanding of environmental determinants of HB and advanced the methodology for prediction of climate-sensitive infectious disease outbreaks.
BackgroundHand, foot and mouth disease (HFMD) incidence is a critical challenge to disease control and prevention in parts of China, particularly Guangxi. However, the association between socioeconomic factors and meteorological factors on HFMD is still unclear.MethodsThis study applied global and local Moran’s I to examine the spatial pattern of HFMD and series analysis to explore the temporal pattern. The effects of meteorological factors and socioeconomic factors on HFMD incidence in Guangxi, China were analyzed using GeoDetector Model.ResultsThis study collected 45,522 cases from 87 counties in Guangxi during 2015, among which 43,711 cases were children aged 0–4 years. Temporally, there were two HFMD risk peaks in 2015. One peak was in September with 7890 cases. The other appeared in May with 4687 cases of HFMD. A high-risk cluster was located in the valley areas. The tertiary industry, precipitation and second industry had more influence than other risk factors on HFMD incidence with explanatory powers of 0.24, 0.23 and 0.21, respectively. The interactive effect of any two risk factors would enhance the risk of HFMD.ConclusionsThis study suggests that precipitation and tertiary industry factors might have stronger effects on the HFMD incidence in Guangxi, China, compared with other factors. High-risk of HFMD was identified in the valley areas characterized by high temperature and humidity. Local government should pay more attention and strengthen public health services level in this area.
This paper examines the causal relationship among economic growth, energy structure, R&D investment and carbon emission in China by using autoregressive distributed lag bounds testing approach of cointegration during the period of 1990 -2011. In order to examine this linkage, theauthors use the two-step procedures. Firstly, theauthors conducted the unit root tests to measure whether the single integrated of time series is not more than 1. Secondly, theauthors explore the long-run relationships between the variables by using ARDL bounds testing approach complemented by Johansen-Juselius maximum likelihood procedure in a multivariate framework. The findings are as follows:when carbon emissions and economic growth, respectively, are the dependent variable, the other independent variables show the long-term stability cointegration relationship of the dependent variable. Whether in the short-run or long-run relationship, the impact of economic growth and R&D investment on carbon emission is not statistically significant. In the long term and short term relationships, carbon emissions have a positive impact on the economic growth. However, energy structure has a negative impact on the economic growth.The decrease in energy structure will cause carbon emissions reduction and boost economic growth in both the long-run and short-run period.Therefore, China's government should give more attention to the optimization of energy structure and make a reasonable and feasible energy saving policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.