Tomato ( Solanum lycopersicum ) is one of the highest-value vegetable crops worldwide. Understanding the genetic regulation of primary metabolite levels can inform efforts aimed toward improving the nutrition of commercial tomato cultivars, while maintaining key traits such as yield and stress tolerance. We identified 388 suggestive association loci (including 126 significant loci) for 92 metabolic traits including nutrition and flavor-related loci by genome-wide association study from 302 accessions in two different environments. Among them, an ascorbate quantitative trait locus TFA9 ( T OMATO F RUIT A SCORBATEON CHROMOSOME 9 ) co-localized with SlbHLH59 , which promotes high ascorbate accumulation by directly binding to the promoter of structural genes involved in the D-mannose/L-galactose pathway. The causal mutation of TFA9 is an 8-bp InDel, named InDel_8, located in the promoter region of SlbHLH59 and spanned a 5’UTR Py-rich stretch motif affecting its expression. Phylogenetic analysis revealed that differentially expressed SlbHLH59 alleles were selected during tomato domestication. Our results provide a dramatic illustration of how ascorbate biosynthesis can be regulated and was selected during the domestication of tomato. Furthermore, the findings provide novel genetic insights into natural variation of metabolites in tomato fruit, and will promote efficient utilization of metabolite traits in tomato improvement.
Ascorbic acid (AsA) has high antioxidant activities, and its biosynthesis has been well studied by engineering of a single structural gene (SG) in staple crops, such as tomato (Solanum lycopersicum). However, engineering the AsA metabolic pathway by multi-SG for biofortification remains unclear. In this study, pyramiding transgenic lines including GDP-Mannose 3′,5′-epimerase (GME) × GDP-d-mannose pyrophosphorylase (GMP), GDP-l-Gal phosphorylase (GGP) × l-Gal-1-P phosphatase (GPP) and GME × GMP × GGP × GPP, were obtained by hybridization of four key genes to get over-expression transgenic plants (GME, GMP, GGP, and GPP) in tomato. Pyramiding lines exhibited a significant increase in total ascorbate in leaves and red fruits except for GGP × GPP. Expression analysis indicated that increased accumulation of AsA in pyramiding transgenic lines is due to multigene regulation in AsA biosynthesis. Substrate feeding in leaf and fruit suggested that AsA biosynthesis was mainly contributed by the d-Man/l-Gal pathway in leaves, while alternative pathways may contribute to AsA accumulation in tomato fruit. Pyramiding lines showed an enhanced light response, stress tolerance, and AsA transport capacity. Also, fruit shape, fruit size, and soluble solids were slightly affected by pyramiding. This study provides the first comprehensive analysis of gene pyramiding for ascorbate biosynthesis in tomato. SGs pyramiding promotes AsA biosynthesis, which in turn enhances light response and oxidative stress tolerance. Also, the data revealed an alternative ascorbate biosynthesis pathway between leaves and fruit of tomato.
Summary Fruit development involves chloroplast development, carotenoid accumulation and fruit coloration. Although genetic regulation of fruit development has been extensively investigated, epigenetic regulation of fruit coloration remains largely unexplored. Here, we report a naturally occurring epigenetic regulation of TAGL1, and its impact on chloroplast development and fruit coloration. We used a genome‐wide association study in combination with map‐based cloning to identify the GREEN STRIPE (GS) locus, a methylated isoform of TAGL1 regulating diversified chloroplast development and carotenoid accumulation. Nonuniform pigmentation of fruit produced by GS was highly associated with methylation of the TAGL1 promoter, which is linked to a SNP at SL2.50ch07_63842838. High degrees of methylation of the TAGL1 promoter downregulated its expression, leading to green stripes. By contrast, low degrees of methylation led to light green stripes in gs. RNA‐seq and ChIP collectively showed that the expression of genes involved with Chl synthesis and chloroplast development were significantly upregulated in green stripes relative to light green stripes. Quantitative PCR and dual luciferase assay confirmed that TAGL1 downregulates expression of SlMPEC, SlPsbQ, and SlCAB, and upregulates expression of PSY1 – genes which are associated with chloroplast development and carotenoid accumulation. Altogether, our findings regarding the GS locus demonstrate that naturally occurring methylation of TAGL1 has diverse effects on plastid development in fruit.
In plants, chloroplasts are the sites at which photosynthesis occurs, and an increased abundance of chloroplasts increases the nutritional quality of plants and the resultant color of fruits. However, the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in tomato fruits remain unknown. In this study, we isolated a chlorophyll-deficient mutant, reduced chlorophyll mutant 1 (rcm1), by ethylmethanesulfonate mutagenesis; this mutant produced yellowish fruits with altered chloroplast development. MutMap revealed that Solyc08g005010 is the causal gene underlying the rcm1 mutant phenotype. A single-nucleotide base substitution in the second exon of SlRCM1 results in premature termination of its translated protein. SlRCM1 encodes a chloroplast-targeted metalloendopeptidase that is orthologous to the BCM1 protein of Arabidopsis and the stay-green G protein of soybean (Glycine max L. Merr.). Notably, the yellowish phenotype of the lutescent1 mutant can be restored with the allele of SlRCM1 from wild-type tomato. In contrast, knockout of SlRCM1 by the CRISPR/Cas9 system in Alisa Craig yielded yellowish fruits at the mature green stage, as was the case for lutescent1. Amino acid sequence alignment and functional complementation assays showed that SlRCM1 is indeed Lutescent1. These findings provide new insights into the regulation of chloroplast development in tomato fruits.
Ascorbic acid (AsA), an important antioxidant and growth regulator, and it is essential for plant development and human health. Specifically, humans have to acquire AsA from dietary sources due to their inability to synthesize it. The AsA biosynthesis pathway in plants has been elucidated, but its regulatory mechanism remains largely unknown. In this report, we biochemically identified a CCAAT-box transcription factor (SlNFYA10) that can bind to the promoter of SlGME1, which encodes GDP-Man-3’,5’-epimerase, a pivotal enzyme in the d-mannose/l-galactose pathway. Importantly, SlNFYA10 simultaneously binds to the promoter of SlGGP1, a downstream gene of SlGME1 in the d-mannose/l-galactose pathway. Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1. Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits, accompanied by enhanced sensitivity to oxidative stress. Overall, SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.