No abstract
McLeod syndrome is caused by mutations of XK, an X-chromosomal gene of unknown function. Originally defined as a peculiar Kell blood group variant, the disease affects multiple organs, including the nervous system, but is certainly underdiagnosed. We analyzed the mutations and clinical findings of 22 affected men, aged 27 to 72 years. Fifteen different XK mutations were found, nine of which were novel, including the one of the eponymous case McLeod. Their common result is predicted absence or truncation of the XK protein. All patients showed elevated levels of muscle creatine phosphokinase, but clinical myopathy was less common. A peripheral neuropathy with areflexia was found in all but 2 patients. The central nervous system was affected in 15 patients, as obvious from the occurrence of seizures, cognitive impairment, psychopathology, and choreatic movements. Neuroimaging emphasized the particular involvement of the basal ganglia, which was also detected in 1 asymptomatic young patient. Most features develop with age, mainly after the fourth decade. The resemblance of McLeod syndrome with Huntington's disease and with autosomal recessive chorea-acanthocytosis suggests that the corresponding proteins--XK, huntingtin, and chorein--might belong to a common pathway, the dysfunction of which causes degeneration of the basal ganglia.
head of red cell immunohaematology, 2 Geoff Daniels, head of molecular diagnostics 1 ABSTRACT Objectives To assess the feasibility of applying a high throughput method, with an automatic robotic technique, for predicting fetal RhD phenotype from fetal DNA in the plasma of RhD negative pregnant women to avoid unnecessary treatment with anti-RhD immunoglobulin. Design Prospective comparison of fetal RHD genotype determined from fetal DNA in maternal plasma with the serologically determined fetal RhD phenotype from cord blood. Setting Antenatal clinics and antenatal testing laboratories in the Midlands and north of England and an international blood group reference laboratory. Participants Pregnant women of known gestation identified as RhD negative by an antenatal testing laboratory. Samples from 1997 women were taken at or before the 28 week antenatal visit. Main outcome measures Detection rate of fetal RhD from maternal plasma, error rate, false positive rate, and the odds of being affected given a positive result. Results Serologically determined RhD phenotypes were obtained from 1869 cord blood samples. In 95.7% (n=1788) the correct fetal RhD phenotype was predicted by the genotyping tests. In 3.4% (n=64) results were either unobtainable or inconclusive. A false positive result was obtained in 0.8% (14 samples), probably because of unexpressed or weakly expressed fetal RHD genes. In only three samples (0.2%) were false negative results obtained. If these results had been applied as a guide to treatment, only 2% of the women would have received anti-RhD unnecessarily, compared with 38% without the genotyping. Conclusions High throughput RHD genotyping of fetuses in all RhD negative women is feasible and would substantially reduce unnecessary administration of antiRhD immunoglobulin to RhD negative pregnant women with an RhD negative fetus.
Antigens of the Rh blood group system are encoded by 2 homologous genes, RHD and RHCE, that produce 2 red cell membrane proteins. The D-negative phenotype is considered to result, almost invariably, from homozygosity for a complete deletion ofRHD. The basis of all PCR tests for predicting fetal D phenotype from DNA obtained from amniocytes or maternal plasma is detection of the presence of RHD. These tests are used in order to ascertain the risk of hemolytic disease of the newborn. We have identified an RHD pseudogene (RHD ψ) in Rh D-negative Africans. RHDψ contains a 37 base pair (bp) insert in exon 4, which may introduce a stop codon at position 210. The insert is a sequence duplication across the boundary of intron 3 and exon 4.RHDψ contains another stop codon in exon 6. The frequency ofRHDψ in black South Africans is approximately 0.0714. Of 82 D-negative black Africans, 66% hadRHDψ, 15% had the RHD-CE-D hybrid gene associated with the VS+ V– phenotype, and only 18% completely lackedRHD. RHDψ is present in about 24% of D-negative African Americans and 17% of D-negative South Africans of mixed race. No RHD transcript could be detected in D-negative individuals with RHDψ, probably as a result of nonsense-mediated mRNA decay. Existing PCR-based methods for predicting D phenotype from DNA are not suitable for testing Africans or any population containing a substantial proportion of people with African ethnicity. Consequently, we have developed a new test that detects the 37 bp insert in exon 4 of RHDψ. (Blood. 2000; 95:12-18)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.