We report on rare earth element and neodymium isotopic compositions in a series of grain-size fractions separated from river suspended matter in the Murray-Darling Basin (MDB) and a nearby marine sediment core (MD03-2607) offshore southeastern Australia. This source-to-sink approach was used to further investigate the extent to which sediment sorting may control the geochemistry of suspended loads in rivers, and to provide constraints on the source of the detrital sediment material exported to the ocean. Our results provide further compelling evidence that significant sizedependent geochemical decoupling can occur in river systems, accounting here for Nd isotopic (ε Nd) differences of up to eight epsilon-units between silt (>25 µm) and colloidal (0.2−0.006 µm; 0.006−0.003 µm) fractions. All suspended particulate samples from the River Murray watershed display a trend toward more radiogenic (higher ε Nd) Nd signatures with decreasing grain-size, in addition to differing REE signatures, which collectively point toward a preferential volcanogenic origin for the fine-grained inorganic particles transported by MDB rivers. Furthermore, we show that the same river-borne volcanogenic material dominates in the fine-grained detrital fractions extracted from core MD03-2607 at the southeastern Australian margin; a finding corroborated by REE signatures in a series of copepod fecal pellet separates from the same core. Collectively, our results suggest that river sediment discharge is accompanied by preferential export of fine-grained volcanogenic particles to the ocean. This potential source of bioavailable trace metals and nutrients in ocean surface waters could impact marine productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.