A new method for generating synthetic salinity (SS) profiles in the Southwest Atlantic was developed and applied in data assimilation experiments. This method was based on the smallest integrated values of root mean square deviation (RMSD)—with respect to observations—to infer salinity through climatological data and by regressive methods on temperature (T) using a five‐order polynomial function (P5). In the 14 delimited subregions, the averaged RMSD of P5 was 45% smaller than interpolated climatological data. However, climatological salinity presented better results in the first top layers while P5 presented smaller errors in higher depths. Therefore, by joining the best that P5 and climatology may offer, a new hybrid approach was used to generate SS based on T from XBT profiles. The SS would allow more T profiles to be employed in the Oceanographic Modeling and Observation Network (REMO) data assimilation system, called RODAS, into the Hybrid Coordinate Ocean Model (HYCOM). The use of SS estimates has potential to improve model outputs, in which the presence of the T‐S pair is quite necessary. Three integrations were performed: one run without assimilation (FREE), one assimilating sea surface temperature, Argo profilers, and sea level anomaly (RODAS) and one similar to RODAS, but with added XBTs with SS (RODAS_XBT). The inclusion of XBT data in the HYCOM + RODAS system improved the position and magnitude of the Brazil Current (BC). It was shown that SS is feasible for producing ocean reanalysis and initial conditions for ocean forecast systems requiring very low computational cost.
A 6-h data were obtained from the fifth generation of the European Center for Medium-Range Weather Forecasts (ECMWF) global reanalysis (ERA5) with 0.25° resolution. Since interactions with TCs can modify the synoptic conditions around the storm (Park et al., 2012), the variables were convolved with a box of width 10 and 20 cells. This averaging with 10 cells (2.5°) was used for the analysis based on monthly means and was enough to average out the TC's effects. The 20 cells averaging (5°) was applied for the along track analysis, which being based on instantaneous data, required a larger convolution width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.