Abstract-A key challenge to the future of energy-harvesting systems is the discontinuous power supply that is often generated. We propose a new approach, Hibernus, which enables computation to be sustained during intermittent supply. The approach has a low energy and time overhead which is achieved by reactively hibernating: saving system state only once, when power is about to be lost, and then sleeping until the supply recovers. We validate the approach experimentally on a processor with FRAM nonvolatile memory, allowing it to reactively hibernate using only energy stored in its decoupling capacitance. When compared to a recently proposed technique, the approach reduces processor time and energy overheads by 76-100% and 49-79% respectively.
Abstract-Energy harvesters are being used to power autonomous systems, but their output power is variable and intermittent. To sustain computation, these systems integrate batteries or supercapacitors to smooth out rapid changes in harvester output. Energy storage devices require time for charging and increase the size, mass and cost of systems. The field of transient computing moves away from this approach, by powering the system directly from the harvester output. To prevent an application from having to restart computation after a power outage, approaches such as Hibernus allow these systems to hibernate when supply failure is imminent. When the supply reaches the operating threshold, the last saved state is restored and the operation is continued from the point it was interrupted. This work proposes Hibernus++ to intelligently adapt the hibernate and restore thresholds in response to source dynamics and system load properties. Specifically, capabilities are built into the system to autonomously characterize the hardware platform and its performance during hibernation in order to set the hibernation threshold at a point which minimizes wasted energy and maximizes computation time. Similarly, the system auto-calibrates the restore threshold depending on the balance of energy supply and consumption in order to maximize computation time. Hibernus++ is validated both theoretically and experimentally on microcontroller hardware using both synthesized and real energy harvesters. Results show that Hibernus++ provides an average 16% reduction in energy consumption and an improvement of 17% in application execution time over stateof-the-art approaches.
Abstract-Modern mobile and embedded devices are required to be increasingly energy-efficient while running more sophisticated tasks, causing the CPU design to become more complex and employ more energy-saving techniques. This has created a greater need for fast and accurate power estimation frameworks for both run-time CPU energy management and design-space exploration. We present a statistically rigorous and novel methodology for building accurate run-time power models using Performance Monitoring Counters (PMCs) for mobile and embedded devices, and demonstrate how our models make more efficient use of limited training data and better adapt to unseen scenarios by uniquely considering stability. Our robust model formulation reduces multicollinearity, allows separation of static and dynamic power, and allows a 100× reduction in experiment time while sacrificing only 0.6% accuracy. We present a statistically detailed evaluation of our model, highlighting and addressing the problem of heteroscedasticity in power modeling. We present software implementing our methodology and build power models for ARM Cortex-A7 and Cortex-A15 CPUs, with 3.8% and 2.8% average error, respectively. We model the behavior of the nonideal CPU voltage regulator under dynamic CPU activity to improve modeling accuracy by up to 5.5% in situations where the voltage cannot be measured. To address the lack of research utilizing PMC data from real mobile devices, we also present our data acquisition method and experimental platform software. We support this work with online resources including software tools, documentation, raw data and further results.
The technology and healthcare industries have been deeply intertwined for quite some time. New opportunities, however, are now arising as a result of fast-paced expansion in the areas of the Internet of Things (IoT) and Big Data. In addition, as people across the globe have begun to adopt wearable biosensors, new applications for individualized eHealth and mHealth technologies have emerged. The upsides of these technologies are clear: they are highly available, easily accessible, and simple to personalize; additionally they make it easy for providers to deliver individualized content cost-effectively, at scale. At the same time, a number of hurdles currently stand in the way of truly reliable, adaptive, safe and efficient personal healthcare devices. Major technological milestones will need to be reached in order to address and overcome those hurdles; and that will require closer collaboration between hardware and software developers and medical personnel such as physicians, nurses, and healthcare workers. The purpose of this special issue is to analyze the top concerns in IoT technologies that pertain to smart sensors for health care applications; particularly applications targeted at individualized tele-health interventions with the goal of enabling healthier ways of life. These applications include wearable and body sensors, advanced pervasive healthcare systems, and the Big Data analytics required to inform these devices.
The thermal profile of multicore systems vary both within an application's execution (intra) and also when the system switches from one application to another (inter). In this paper, we propose an adaptive thermal management approach to improve the lifetime reliability of multicore systems by considering both inter-and intra-application thermal variations. Fundamental to this approach is a reinforcement learning algorithm, which learns the relationship between the mapping of threads to cores, the frequency of a core and its temperature (sampled from on-board thermal sensors). Action is provided by overriding the operating system's mapping decisions using affinity masks and dynamically changing CPU frequency using in-kernel governors. Lifetime improvement is achieved by controlling not only the peak and average temperatures but also thermal cycling, which is an emerging wear-out concern in modern systems. The proposed approach is validated experimentally using an Intel quad-core platform executing a diverse set of multimedia benchmarks. Results demonstrate that the proposed approach minimizes average temperature, peak temperature and thermal cycling, improving the mean-timeto-failure (MTTF) by an average of 2x for intra-application and 3x for inter-application scenarios when compared to existing thermal management techniques. Furthermore, the dynamic and static energy consumption are also reduced by an average 10% and 11% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.