A vector measure (countable additive set function with values in a Banach
space) on a field may be extended to a vector measure on the generated σ-
field, under certain hypotheses. For example, the extension is established
for the bounded variation case [2, 5, 8], and there are more general
conditions under which the extension exists [ 1 ]. The above results have as
hypotheses fairly strong boundedness conditions on the n o rm of the measure
to be extended. In this paper we prove an extension theorem of the same type
with a restriction on the range, supposing further that the measure is
merely bounded. In fact a vector measure on a σ- field is bounded (III. 4. 5
of [3]) but it is conceivable that a vector measure on a field could be
unbounded.
Introduction. This paper concerns the problem of extending a given measure defined on a Boolean ring to a measure on the generated σ-ring. Two general methods are familiar to the literature, that of Lebesgue (outer measure) and a method proposed by Borel using transfinite induction (4, 49-134; 2, 228-238).
The main results of this paper are the following: (1) An extension theorem for a uniform semigroup-valued measure on a ring to the generated σ-ring. This result unifies the classieal Hahn-Carathéodory theorem, the extension theorem of Sion and a more recent result of Weber.(2) A theorem stating that every monocompact additive uniform semigroup-valued set function on a semiring is σ-additive. This result generalizes several earlier theorems of Alexandroff, Dinculeanu-Kluvanek, Glicksberg, Huneycutt, Mallory, Marczewski, Millington and Topsøe.
Our purpose is to improve the Gale-type multifunction Ascoli theorem of Mancuso (1971; page 470). This latter supposes the range space to be normal and Hausdorff, and therefore does not contain Gale's theorem (1950; page 304). To obtain a multifunction theorem containing Gale's theorem (also Mancuso's theorem), we return to Gale's essential hypotheses. Thus, we assume the regularity of the range space in the sufficiency direction, and, in the necessity direction, weassume the domain to be a k-space and the range to be a regular Hausdorff space. We dispense with the “point-like” condition imposed by Mancuso. Unexplained terminology and notation is that of Mancusopos;s paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.