Fat embolism is a common autopsy finding in patients with or without a history of trauma. There are two basic mechanisms causing fat to embolize. Depot-derived fat embolism arises by disruption of depot fat, usually as a result of trauma, allowing direct entry into the bloodstream. Plasma-derived fat embolism is caused by agglutination of endogenous or infused exogenous fat such as Intralipid, with consequent embolism. Chylomicrons and Intralipid liposomes are known to undergo calcium-dependent agglutination by C-reactive protein (CRP), and this may play a role in vivo in this type of fat embolism.
Epithelial–mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit.
Background:There remains a need to identify and validate biomarkers for predicting prostate cancer (CaP) outcomes using robust and routinely available pathology techniques to identify men at most risk of premature death due to prostate cancer. Previous immunohistochemical studies suggest the proliferation marker Ki67 might be a predictor of survival, independently of PSA and Gleason score. We performed a validation study of Ki67 as a marker of survival and disease progression and compared its performance against another candidate biomarker, DLX2, selected using artificial neural network analysis.Methods:A tissue microarray (TMA) was constructed from transurethral resected prostatectomy histology samples (n=192). Artificial neural network analysis was used to identify candidate markers conferring increased risk of death and metastasis in a public cDNA array. Immunohistochemical analysis of the TMA was carried out and univariate and multivariate tests performed to explore the association of tumour protein levels of Ki67 and DLX2 with time to death and metastasis.Results:Univariate analysis demonstrated Ki67 as predictive of CaP-specific survival (DSS; P=0.022), and both Ki67 (P=0.025) and DLX2 (P=0.001) as predictive of future metastases. Multivariate analysis demonstrated Ki67 as independent of PSA, Gleason score and D'Amico risk category for DSS (HR=2.436, P=0.029) and both Ki67 (HR=3.296, P=0.023) and DLX2 (HR=3.051, P=0.003) as independent for future metastases.Conclusions:High Ki67 expression is only present in 6.8% of CaP patients and is predictive of reduced survival and increased risk of metastasis, independent of PSA, Gleason score and D'Amico risk category. DLX2 is a novel marker of increased metastasis risk found in 73% patients and 8.2% showed co-expression with a high Ki67 score. Two cancer cell proliferation markers, Ki67 and DLX2, may be able to inform clinical decision-making when identifying patients for active surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.