IMPORTANCE Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections.OBJECTIVE To compare the effect of N95 respirators vs medical masks for prevention of influenza and other viral respiratory infections among HCP. DESIGN, SETTING, AND PARTICIPANTSA cluster randomized pragmatic effectiveness study conducted at 137 outpatient study sites at 7 US medical centers between September 2011 and May 2015, with final follow-up in June 2016. Each year for 4 years, during the 12-week period of peak viral respiratory illness, pairs of outpatient sites (clusters) within each center were matched and randomly assigned to the N95 respirator or medical mask groups.INTERVENTIONS Overall, 1993 participants in 189 clusters were randomly assigned to wear N95 respirators (2512 HCP-seasons of observation) and 2058 in 191 clusters were randomly assigned to wear medical masks (2668 HCP-seasons) when near patients with respiratory illness. MAIN OUTCOMES AND MEASURESThe primary outcome was the incidence of laboratory-confirmed influenza. Secondary outcomes included incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenzalike illness. Adherence to interventions was assessed.RESULTS Among 2862 randomized participants (mean [SD] age, 43 [11.5] years; 2369 [82.8%]) women), 2371 completed the study and accounted for 5180 HCP-seasons. There were 207 laboratory-confirmed influenza infection events (8.2% of HCP-seasons) in the N95 respirator group and 193 (7.2% of HCP-seasons) in the medical mask group (difference, 1.0%, [95% CI, −0.5% to 2.5%]; P = .18) (adjusted odds ratio [OR], 1.18 [95% CI, 0.95-1.45]). There were 1556 acute respiratory illness events in the respirator group vs 1711 in the mask group (difference, −21.9 per 1000 HCP-seasons [95% CI, −48.2 to 4.4]; P = .10); 679 laboratory-detected respiratory infections in the respirator group vs 745 in the mask group (difference, −8.9 per 1000 HCP-seasons, [95% CI, −33.3 to 15.4]; P = .47); 371 laboratory-confirmed respiratory illness events in the respirator group vs 417 in the mask group (difference, −8.6 per 1000 HCP-seasons [95% CI, −28.2 to 10.9]; P = .39); and 128 influenzalike illness events in the respirator group vs 166 in the mask group (difference, −11.3 per 1000 HCP-seasons [95% CI, −23.8 to 1.3]; P = .08). In the respirator group, 89.4% of participants reported "always" or "sometimes" wearing their assigned devices vs 90.2% in the mask group.CONCLUSIONS AND RELEVANCE Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza.
ClinicalTrials.gov identifier: NCT00391053 .
Phase I studies of volunteers not infected with human immunodeficiency virus type 1 (HIV-1) have shown that immunization with envelope subunit vaccine products elicits antibodies that neutralize laboratory-adapted (prototype) HIV-1 strains in vitro. Prototype strains are adapted to grow in continuous (neoplastic) cell lines and are more susceptible to neutralization than are primary isolates cultured in human peripheral blood mononuclear cells. In this study, 50 sera from nine phase I vaccine trials and 16 from HIV-1-infected persons were evaluated for neutralizing antibody activity against 3 laboratory-adapted and 5 primary HIV-1 isolates. Of 50 sera, 49 neutralized at least 1 of the prototype strains; however, none displayed neutralizing activity against primary isolates of HIV-1. Serum from most HIV-1-infected persons neutralized both laboratory-adapted and primary HIV-1 isolates. These data demonstrate a qualitative, or large quantitative, difference in the neutralizing antibody response induced by envelope subunit vaccination and natural HIV-1 infection.
Little is known about the prevalence of mucosal antibodies induced by infection with human coronaviruses (HCoV), including HCoV-229E and -OC43 and recently described strains (HCoV-NL63 and -HKU1). By enzyme-linked immunosorbent assay, we measured anti-HCoV IgG antibodies in serum and IgA antibodies in nasal wash specimens collected at seven U.S. sites from 105 adults aged 50 years and older (mean age, 67 ؎ 9 years) with chronic obstructive pulmonary disease. Coronaviruses comprise a genus of the family Coronaviridae and are enveloped, single-stranded, positive-sense RNA viruses (30). Four human coronavirus (HCoV) strains have been described, which are associated with a spectrum of disease, from mild, febrile upper respiratory tract illnesses to severe illnesses, including croup, bronchiolitis, and pneumonia, and have a wide geographic distribution (1, 2, 6, 7, 9-14, 16, 20, 25, 26, 31, 32, 35, 39-46). HCoV infection has been a contributor to severe illnesses requiring emergency care and hospitalization of patients with chronic medical conditions (7,9,12,15,16,21,22).The earliest-described HCoV strains, HCoV-229E and HCoV-OC43, which are group I and group II coronaviruses, respectively, have now been joined by the more recently described group I and II strains HCoV-NL63 and HCoV-HKU1 (13,30,42,45,46), which were discovered in the search for other pathogenic coronaviruses after the identification of the coronavirus that causes severe acute respiratory syndrome (SARS) (29). HCoV-NL63 may have infected human populations for a long time, since it diverged phylogenetically from HCoV-229E about 1,000 years ago (33), and seroprevalence would likely be high as a result. Cross-sectional and longitudinal seroepidemiological studies have found large proportions of children and healthy adults to have detectable serum antibodies to the four HCoV strains, and seroconversion occurs often in childhood; seroprevalence increases with age, and reinfections may occur (5,8,23,28,(36)(37)(38). More information is needed about the seroprevalence of these viruses, the durability of the humoral immune response, correlates of immunity, and mucosal antibody responses to HCoV infection. The present study questioned whether the prevalence of antibodies to the four HCoV strains would be different in nasal secretions than in serum of older adult veterans with underlying chronic obstructive pulmonary disease (COPD) who participated in Department of Veterans Affairs Cooperative Study 448 (18). MATERIALS AND METHODSSubjects. A convenience sample of 105 patients who met spirometric criteria for COPD and were enrolled in a larger influenza virus vaccine efficacy trial of patients Ն50 years of age (18) were chosen for analysis in this substudy of the prevalence of antibodies to HCoV, because residual serum and nasal wash specimens collected at the same time for each subject were available for analysis. The 105 subjects were enrolled at seven geographically diverse study sites in the United States, located in the following states: Alabama, Florida,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.