An improved understanding of the consumption patterns, end-uses, and temporal variations of electrical loads in houses is warranted because a significant fraction of a society's total electricity consumption occurs within residential buildings. In general, there is a lack of high-temporal-resolution data describing occupant electrical consumption that are available to researchers in this field. To address this, new measurements were performed and combined with data emanating from an earlier study to provide a database of annual measurements for 23 houses at a 1-minute resolution that characterizes whole-house, non-HVAC, air conditioner, and furnace fan electrical draws, as well as the draw patterns of some major appliances. All houses were located in Ottawa, Canada. The non-HVAC measurements of this 23-house sample were shown to be in agreement with published estimates for the housing stock. The furnace fan was found to be the most significant end-use. These high-temporal-resolution data of electrical demands in houses can be used by researchers to increase the fidelity of building performance simulation analyses of different micro-generation technologies in residential buildings.
Currently, there is no generally-accepted defensible methodology that can be used to compare the energy performance of micro-cogeneration systems against reference conventional methods for providing residential thermal and electrical demands. In particular, the mathematical models of micro-cogeneration systems being used in this field have uncertainties associated with their predictions. However, these uncertainties have yet to be given serious attention by researchers in this field. This research makes a contribution by developing a more defensible methodology where these model uncertainties are considered.This methodology is demonstrated with a case study where the energy performance of a fuel-cell based micro-cogeneration system serving only domestic hot water demands is compared to the energy performance of reference conventional methods.A condensing tankless water heater and a central gas-fired combined-cycle plant are considered as these reference conventional methods for providing domestic hot water demands and electrical demands respectively. The simulation results demonstrated that if model uncertainties were ignored, it would have been possible to demonstrate that the considered micro-cogeneration system was more efficient than the reference conventional methods by serving only average consumption levels of domestic hot water. However, if model uncertainties were considered, the micro-cogeneration system could not reliably be shown to be more efficient than the reference conventional methods by serving the domestic hot water needs of a single house.ii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.