Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.
To screen multiple loci in small purified samples of diploid and aneuploid cells a PCR-based technique of whole genome amplification was adapted to the study of somatic lesions. DNA samples from different numbers of flow-sorted diploid and aneuploid cells from biopsies were amplified with a degenerate 15mer primer. Aliquots of these reactions were then used in locus-specific reactions using a single round of PCR cycles with individual sets of primers representing polymorphic markers for different regions. As a result, polymorphic markers for different chromosomal regions, including VNTRs and dinucleotide repeats, can be used to perform up to 30 locus-specific PCR assays with a single sample obtained from fewer than 1000 cells.
Males carrying a large deficiency in the long arm of the Y chromosome known to delete the fertility gene kl-2 are sterile and exhibit a complex phenotype: (1) First metaphase chromosomes are irregular in outline and appear sticky; (2) spermatids contain micronuclei; (3) the nebenkerns of the spermatids are nonuniform in size; (4) a high molecular weight protein ordinarily present in sperm is absent; and (5) crystals appear in the nucleus and cytoplasm of spermatocytes and spermatids. In such males that carry Ste + on their X chromosome the crystals appear long and needle shaped; in Ste males the needles are much shorter and assemble into star-shaped aggregates. The large deficiency may be subdivided into two shorter component deficiencies. The more distal is male sterile and lacks the high molecular weight polypeptide; the more proximal is responsible for the remainder of the phenotype. Ste males carrying the more proximal component deficiency are sterile, but Ste + males are fertile. Genetic studies of chromosome segregation in such males reveal that (1) both the sex chromosomes and the large autosomes undergo nondisjunction, (2) the fourth chromosomes disjoin regularly, (3) sex chromosome nondisjunction is more frequent in cells in which the second or third chromosomes nondisjoin than in cells in which autosomal disjunction is regular, (4) in doubly exceptional cells, the sex chromosomes tend to segregate to the opposite pole from the autosomes and (5) there is meiotic drive; i.e., reciprocal meiotic products are not recovered with equal frequencies, complements with fewer chromosomes being recovered more frequently than those with more chromosomes. The proximal component deficiency can itself be further subdivided into two smaller component deficiencies, both of which have nearly normal spermatogenic phenotypes as observed in the light microscope. Meiosis in Ste + males carrying either of these small Y deficiencies is normal; Ste males, however, exhibit low levels of sex chromosome nondisjunction with either deficient Y. The meiotic phenotype is apparently sensitive to the amount of Y chromosome missing and to the Ste constitution of the X chromosome.
The glue proteins are products of a developmentally regulated gene family. These genes are transcriptionally active during the third larval instar and code for the major protein products of salivary glands. The activity of several of the genes can be visualized as intermoult puffs in the polytene salivary gland chromosomes. The amount of one of these proteins, P5, varies widely among wild-type strains. We have used biochemical and genetic methods to investigate the source of this variation. The results of in vitro translation of salivary gland RNA suggest that the variation occurs pretranslationally. Genetic mapping experiments showed that sites on several chromosomes can modulate the amount of P5, but that one site on the third chromosome determines the absence and presence of this protein. We have mapped this glue protein gene, called GPS, to the interval between bx (3-58-8) and sr (3-620) which also includes the intermoult puff at 90BC. We discuss the relationship between P5 and the glue protein gene Sgs-5 which is also located at 90BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.