Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.
High-dimensional single-cell data has become an important tool in unraveling the complexity of the immune system and its involvement in homeostasis and a large array of pathologies. As technological tools are developed, researchers are adopting them to answer increasingly complex biological questions. Up until recently, mass cytometry (MC) has been the main technology employed in cytometric assays requiring more than 29 markers. Recently, however, with the introduction of full spectrum flow cytometry (FSFC), it has become possible to break the fluorescence barrier and go beyond 29 fluorescent parameters. In this study, in collaboration with the Stanford Human Immune Monitoring Center (HIMC), we compared five patient samples using an established immune panel developed by the HIMC using their MC platform. Using split samples and the same antibody panel, we were able to demonstrate highly comparable results between the two technologies using multiple data analysis approaches. We report here a direct comparison of two technology platforms (MC and FSFC) using a 32-marker flow cytometric immune monitoring panel that can identify all the previously described and anticipated immune subpopulations defined by this panel.
Quantitative or qualitative differences in immunity may drive and predict clinical severity in COVID-19. We therefore measured modules of serum pro-inflammatory, anti-inflammatory and anti-viral cytokines in combination with the anti-SARS-CoV-2 antibody response in COVID-19 patients admitted to tertiary care. Using machine learning and employing unsupervised hierarchical clustering, agnostic to severity, we identified three distinct immunotypes that were shown post-clustering to predict very different clinical courses such as clinical improvement or clinical deterioration. Immunotypes did not associate chronologically with disease duration but rather reflect variations in the nature and kinetics of individual patient's immune response. Here we demonstrate that immunophenotyping can stratify patients to high and low risk clinical subtypes, with distinct cytokine and antibody profiles, that can predict severity progression and guide personalized therapy.
Full spectrum flow cytometry (FSFC) allows for the analysis of more than 40 parameters at the single-cell level. Compared to the practice of manual gating, high-dimensional data analysis can be used to fully explore single-cell datasets and reduce analysis time. As panel size and complexity increases so too does the detail and time required to prepare and validate the quality of the resulting data for use in downstream high-dimensional data analyses. To ensure data analysis algorithms can be used efficiently and to avoid artifacts, some important steps should be considered. These include data cleaning (such as eliminating variable signal change over time, removing cell doublets, and antibody aggregates), proper unmixing of full spectrum data, ensuring correct scale transformation, and correcting for batch effects. We have developed a methodical step-by-step protocol to prepare full spectrum high-dimensional data for use with high-dimensional data analyses, with a focus on visualizing the impact of each step of data preparation using dimensionality reduction algorithms. Application of our workflow will aid FSFC users in their efforts to apply quality control methods to their datasets for use in high-dimensional analysis, and help them to obtain valid and reproducible results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.