Anaerobic chytridiomycete fungi are found in the gastrointestinal tracts of sheep, cattle and goats, as well as in many other domesticated ruminant and nonruminant herbivores and a wide variety of wild herbivorous mammals. They are principally found associated with the fibrous plant particles of digesta and as free swimming zoospores in the fluid phase. The presence of large fungal populations in animals consuming mature pasture or diets largely composed of hay or straw together with the production of highly active fibre degrading enzymes lead to' the belief that anaerobic fungi may have a significant role to play in the assimilation of fibrous feeds by ruminants. While many early studies focused on anaerobic fungi because of their unusual biology and metabolism, the large part of subsequent research has emphasized the biotechnological potential of their cellulases, xylanases and phenolic esterases. In recent years, the extent of the contribution of anaerobic fungi to the nutrition of ruminants has also been established through studies of fungal populations in the rumen and the dietary factors which influence them, as presented in this review. Further, we discuss the evidence supporting an important contribution of anaerobic fungal populations in the rumen to feed intake and digestion of poor quality feed by domesticated ruminants. In conclusion, the review explores some different methods for manipulating fungi in the rumen for increased feed intake and digestion.
The modes of action of atypical tetracyclines that do not directly inhibit bacterial protein synthesis were investigated. The analogs tested, chelocardin, anhydrotetracycline, 6-thiatetracycline, anhydrochlortetracycline, and 4-epi-anhydrochlortetracycline, were bactericidal and caused the lysis of Escherichia coli accompanied by the release of the cytoplasmic enzyme 1-galactosidase into the supernatant. Examination by electron microscopy demonstrated that cells exposed to these analogs underwent marked morphological alterations that included the formation of numerous ghosts and the appearance of cellular debris in the culture medium.Although atypical tetracyclines promoted lysis in intact organisms, they did not cause lysis of E. coli spheroplasts, indicating that the analogs do not directly destroy the cytoplasmic membrane. These agents may promote cell lysis and death by interfering with the membrane's electrochemical gradient, which in turn leads to stimulation of autolytic enzyme activity and cellular lysis. The results support recently published data which indicate that tetracyclines are divisible into two classes on the basis of their modes of action.
Sheep fed the forage Digitaria pentzii fertilized with sulfur were compared with those fed unfertilized forage for the rumen microbial population involved with fiber degradation. No differences were detected in the bacterial population as determined by anaerobic cultures on a habitat-simulating medium, xylan, or pectin, by 35S labeling techniques for microbial protein, or by transmission electron microscopic studies of bacterium-fiber interactions. Rumen volume and water flow from the rumen were not different for sheep fed each of the forages. Rumen fungi were prevalent in sheep fed sulfur-fertilized D. pentzii as shown by sporangia adhering to forage fiber and by colonies developing from zoospores in roll tubes with cellobiose plus streptomycin and penicillin. Fungi were absent or in extremely small numbers in sheep fed unfertilized forage. Nylon bag digestibility studies showed that the fungi preferentially colonized the lignified cells of blade sclerenchyma by 6 h and caused extensive degradation by 24 h. In the absence of bacteria in in vitro studies, extensive hyphal development occurred; other lignified tissues in blades (i.e., mestome sheath and xylem) were attacked, resulting in a residue with partially degraded and weakened cell walls. Nonlignified tissues were also degraded. Breaking force tests of leaf blades incubated in vitro with penicillin and streptomycin and rumen fluid from sheep fed sulfurfertilized forage or within nylon bags in such sheep showed a residue at least twice as fragile as that from sheep fed unfertilized forage. In vitro tests for dry matter loss showed that rumen fungi, in the absence of actively growing bacteria, could remove about 62% of the forage material. The response of rumen fungi in sheep fed sulfur-fertilized D. pentzii afforded a useful in vivo test to study the role of these microbes in fiber degradation. Our data establish that rumen fungi can be significant degraders of fiber and further establish a unique role for them in attacking and weakening lignocellulosic tissues. The more fragile residues resulting from attack by fungi could explain the greater intake consistently observed by sheep eating sulfur-fertilized compared with unfertilized D. pentzii forage. Rees and co-workers (32, 33) showed that sulfur fertilization (+S) reduced retention time of forage in the rumen and increased voluntary intake and digestibility compared with unfertilized (-S) Digitaria sp. forage. The authors suggested that depressed microbial activity due to a sulfur deficiency could have caused poor animal response to-S forage. Similar studies with +S and-S Digitaria pentzii (31) indicated that S fertilization increased voluntary intake and reduced rumen ammonia levels, indicating enhanced microbial activity in the rumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.