Deletion of the bacterial two‐component response regulator homologue Skn7 results in sensitivity of yeast to oxidizing agents indicating that Skn7 is involved in the response to this type of stress. Here we demonstrate that following oxidative stress, Skn7 regulates the induction of two genes: TRX2, encoding thioredoxin, and a gene encoding thioredoxin reductase. TRX2 is already known to be induced by oxidative stress dependent on the Yap1 protein, an AP1‐like transcription factor responsible for the induction of gene expression in response to various stresses. The thioredoxin reductase gene has not previously been shown to be activated by oxidative stress and, significantly, we find that it too is regulated by Yap1. The control of at least TRX2 by Skn7 is a direct mechanism as Skn7 binds to the TRX2 gene promoter in vitro. This shows Skn7 to be a transcription factor, at present the only such eukaryotic two‐component signalling protein. Our data further suggest that Skn7 and Yap1 co‐operate on the TRX2 promoter, to induce transcription in response to oxidative stress.
A method is described to detect DNA polymerases and nucleases in homogeneous or crude enzyme preparations after electrophoresis in SDS-polyacrylamide gels(2) containing the appropriate template or substrate. DNA polymerases are electrophoresed in a gel containing gapped calf thymus DNA and after a renaturation treatment, the gel is incubated in a reaction mixture in which one deoxyribonucleoside triphosphate is [alpha-32P]-labelled. Incorporation of radioactivity into DNA is detected at the vicinity of the polymerase band by autoradiography. An associated nuclease activity can be measured after electrophoresis in a gel containing 32P-labelled gapped DNA, when nucleolytic digestion is seen as a clear band in the resulting autoradiogram. The gels can subsequently be stained with Coomassie blue to establish identical molecular weights of polymerase, nuclease and protein bands. Applications of this technique are discussed.
Control of G1 cyclin expression in Saccharomyces cerevisiae is mediated primarily by the transcription factor SBF (Swi4/Swi6). In the absence of Swi4 and Swi6 cell viability is lost, but can be regained by ectopic expression of the G1 cyclin encoding genes, CLN1 or CLN2. Here we demonstrate that the RME1 (regulator of meiosis) gene can also bypass the normally essential requirement for SBF. RME1 encodes a zinc finger protein which is able to repress transcription of IME1 (inducer of meiosis) and thereby inhibit cells from entering meiosis. We have found that expression of RME1 from a high copy number plasmid can specifically induce CLN2 expression. Deletion of RME1 alone shows no discernible effect on vegetative growth, however, deletion of RME1 in a swi6 delta swi4ts strain results in a lowering of the non‐permissive temperature for viability. This suggests that Rme1 plays a significant but ancillary role in SBF in inducing CLN2 expression. We show that Rme1 interacts directly with the CLN2 promoter and have mapped the region of the CLN2 promoter required for Rme1‐dependent activation. Consistent with Rme1 having a cell cycle role in G1, we have found that RME1 mRNA is synthesized periodically in the cell cycle, with maximum accumulation occurring at the M/G1 boundary. Thus Rme1 may act both to promote mitosis, by activating CLN2 expression, and prevent meiosis, by repressing IME1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.