Combination therapy with bevacizumab and chemotherapy is well-tolerated and active against recurrent malignant gliomas. At recurrence, continuing bevacizumab and changing the chemotherapy agent provided long-term disease control only in a small subset of patients. Bevacizumab may alter the recurrence pattern of malignant gliomas by suppressing enhancing tumor recurrence more effectively than it suppresses nonenhancing, infiltrative tumor growth.
Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct.
We demonstrate the use of coherent anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although non-invasive clinical brain imaging with CT, MRI and PET has transformed the diagnosis of neurologic disease, definitive pre-operative distinction of neoplastic and benign pathologies remains elusive. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy, a nonlinear, vibrationally-sensitive technique, is capable of high-sensitivity chemically-selective three-dimensional imaging without exogenous labeling agents. Like MRI, CARS can be tuned to provide a wide variety of possible tissue contrasts, but with sub-cellular spatial resolution and near real time temporal resolution. These attributes make CARS an ideal technique for fast, minimally invasive, non-destructive, molecularly specific intraoperative optical diagnosis of brain lesions. This promises significant clinical benefit to neurosurgical patients by providing definitive diagnosis of neoplasia prior to tissue biopsy or resection. CARS imaging can augment the diagnostic accuracy of traditional frozen section histopathology in needle biopsy and dynamically define the margins of tumor resection during brain surgery. This report illustrates the feasibility of in vivo CARS vibrational histology as a clinical tool for neuropathological diagnosis by demonstrating the use of CARS microscopy in identifying normal brain structures and primary glioma in fresh unfixed and unstained ex vivo brain tissue.
We have tested the predictive value of apparent diffusion coefficient (ADC) histogram analysis in stratifying progression-free survival (PFS) and overall survival (OS) in bevacizumab-treated patients with recurrent glioblastoma multiforme (GBM) from the multi-center BRAIN study. Available MRI’s from patients enrolled in the BRAIN study (n = 97) were examined by generating ADC histograms from areas of enhancing tumor on T1 weighted post-contrast images fitted to a two normal distribution mixture curve. ADC classifiers including the mean ADC from the lower curve (ADC-L) and the mean lower curve proportion (LCP) were tested for their ability to stratify PFS and OS by using Cox proportional hazard ratios and the Kaplan–Meier method with log-rank test. Mean ADC-L was 1,209 × 10−6mm2/s ± 224 (SD), and mean LCP was 0.71 ± 0.23 (SD). Low ADC-L was associated with worse outcome. The hazard ratios for 6-month PFS, overall PFS, and OS in patients with less versus greater than mean ADC-L were 3.1 (95 % confidence interval: 1.6, 6.1; P = 0.001), 2.3 (95 % CI: 1.3, 4.0; P = 0.002), and 2.4 (95 % CI: 1.4, 4.2; P = 0.002), respectively. In patients with ADC-L<1,209 and LCP>0.71 versus ADC-L>1,209 and LCP <0.71, there was a 2.28-fold reduction in the median time to progression, and a 1.42-fold decrease in the median OS. The predictive value of ADC histogram analysis, in which low ADC-L was associated with poor outcome, was confirmed in bevacizumab-treated patients with recurrent GBM in a post hoc analysis from the multi-center (BRAIN) study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.