Over one million patients per year undergo some type of procedure involving cartilage reconstruction. Polymer hydrogels, such as alginate, have been shown to be effective carriers for chondrocytes in subcutaneous cartilage formation. The goal of our current study was to develop a method to create complex structures (nose bridge, chin, etc.) with good dimensional tolerance to form cartilage in specific shapes. Molds of facial implants were prepared using Silastic ERTV. Suspensions of chondrocytes in 2% alginate were gelled by mixing with CaSO(4) (0.2 g/mL) and injected into the molds. Constructs of various cell concentrations (10, 25, and 50 million/mL) were implanted in the dorsal aspect of nude mice and harvested at times up to 30 weeks. Analysis of implanted constructs indicated progressive cartilage formation with time. Proteoglycan and collagen constructs increased with time to approximately 60% that of native tissue. Equilibrium modulus likewise increased with time to 15% that of normal tissue, whereas hydraulic permeability decreased to 20 times that of native tissue. Implants seeded with greater concentrations of cells increased proteoglycan content and collagen content and equilibrium and decreased permeability. Production of shaped cartilage implants by this technique presents several advantages, including good dimensional tolerance, high sample-to-sample reproducibility, and high cell viability. This system may be useful in the large-scale production of precisely shaped cartilage implants.
Each year, more than one million patients undergo some type of procedure involving cartilage reconstruction. Polymer hydrogels such as alginate have been demonstrated to be effective carriers of chondrocytes for subcutaneous cartilage formation. The goal of this study was to develop a simple method to create complex structures with good three-dimensional tolerance in order to form cartilage in specific shapes in an autologous animal model. Six alginate implants that had been seeded with autologous chondrocytes through an injection molding process were implanted subcutaneously in sheep, harvested after 6 months, and analyzed histologically, biochemically, and biomechanically, in comparison with original auricular cartilage. Molds of craniofacial implants were prepared with Silastic E RTV (Dow Corning, Midland, Mich.). Chondrocytes were harvested from sheep auricular cartilage and suspended in 2% alginate at a concentration of 50 x 10(6) cells/ml. The mixture of cells and gel was injected into the Silastic molds and removed after 20 minutes. Chondrocyte-alginate constructs were implanted subcutaneously in the necks of the sheep from which the cells had originally been harvested, and the constructs were removed after 30 weeks. Analyses of the implanted constructs indicated cartilage formation with three-dimensional shape retention. The proteoglycan and collagen contents of the constructs increased with time to approximately 80 percent of the values for native tissue. The equilibrium modulus and the hydraulic permeability were 74 and 105 percent of those of native sheep auricular cartilage, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.