Sustainable Development Goals and the Paris Agreement stand as milestone diplomatic achievements. However, immense discrepancies between political commitments and governmental action remain. Combined national climate commitments fall far short of the Paris Agreement's 1.5/2°C targets. Similar political ambition gaps persist across various areas of sustainable development. Many therefore argue that actions by nonstate actors, such as businesses and investors, cities and regions, and nongovernmental organizations (NGOs), are crucial. These voices have resonated across the United Nations (UN) system, leading to growing recognition, promotion, and mobilization of such actions in ever greater numbers. This article investigates optimistic arguments about nonstate engagement, namely: (a) “the more the better”; (b) “everybody wins”; (c) “everyone does their part”; and (d) “more brings more.” However, these optimistic arguments may not be matched in practice due to governance risks. The current emphasis on quantifiable impacts may lead to the under‐appreciation of variegated social, economic, and environmental impacts. Claims that everybody stands to benefit may easily be contradicted by outcomes that are not in line with priorities and needs in developing countries. Despite the seeming depoliticization of the role of nonstate actors in implementation, actions may still lead to politically contentious outcomes. Finally, nonstate climate and sustainability actions may not be self‐reinforcing but may heavily depend on supporting mechanisms. The article concludes with governance risk‐reduction strategies that can be combined to maximize nonstate potential in sustainable and climate‐resilient transformations. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governance
Sustainability is a key challenge for humanity in the context of complex and unprecedented global changes. Future Earth, an international research initiative aiming to advance global sustainability science, has recently launched knowledge–action networks (KANs) as mechanisms for delivering its research strategy. The research initiative is currently developing a KAN on “natural assets” to facilitate and enable action-oriented research and synthesis towards natural assets sustainability. ‘Natural assets’ has been adopted by Future Earth as an umbrella term aiming to translate and bridge across different knowledge systems and different perspectives on peoples’ relationships with nature. In this paper, we clarify the framing of Future Earth around natural assets emphasizing the recognition on pluralism and identifying the challenges of translating different visions about the role of natural assets, including via policy formulation, for local to global sustainability challenges. This understanding will be useful to develop inter-and transdisciplinary solutions for human–environmental problems by (i) embracing richer collaborative decision processes and building bridges across different perspectives; (ii) giving emphasis on the interactions between biophysical and socioeconomic drivers affecting the future trends of investments and disinvestments in natural assets; and (iii) focusing on social equity, power relationships for effective application of the natural assets approach. This understanding also intends to inform the scope of the natural asset KAN’s research agenda to mobilize the translation of research into co-designed action for sustainability.Electronic supplementary materialThe online version of this article (10.1007/s11625-018-0599-5) contains supplementary material, which is available to authorized users.
The composition, abundance, diversity and species richness of soil macro-fauna communities were assessed in four major land use types present within protected and agricultural landscapes in Maasai Mara savannah ecosystem (MME), Kenya. The four land uses were: natural grassland; woodland, inside and outside protected area; maize mono-cropping and maize-bean intercropping systems in adjacent agricultural farms. Sampling of soil macro-fauna was carried out in November, 2009 (short rain), April 2010 (wet rainy season) and September 2010 (dry season). Hand sorting of soil taken from 25 × 25 × 30 cm monoliths was used to extract all soil macro fauna greater than 2 mm body length. A total of 3,658 individuals comprising of 128 species mainly belonging to Phylum Arthropoda distributed across 3 classes and 13 orders, and Phylum Annelida with one order were collected across the four different land use systems. Termites and ants, and to a lesser extent coleopteran and earthworms were the most abundant groups. Significant effects of land use on macro-fauna abundance and species richness in all cases (p<0.001) were observed. There were significant interaction between Season*Region*Land use (p<0.01), Region*Land use (p<0.05) and Region*Protection*Land use (p<0.02). Grassland and woodland had the highest density (1351.61 vs. 2852.47 individual m-2) of total macro-fauna, whilst the lowest density occurred in agricultural land (205.48 individual m-2). Agriculture altered macro-fauna communities by declining individuals from Order Coleoptera, Hymenoptera and isoptera by > 50% and eliminating some Orders/Species. Human related disturbances outside protected area network declined macro-fauna density in grassland and woodland in dry region (65.07 vs. 39.74%) but increased the density by 107 vs. 340% in wet region. The study highlights the important effect of agriculture on macro-fauna communities and the need for conservation alternatives in unprotected areas. This study supports conservation of biodiversity beyond protected area network.
Land use dynamics are known to cause considerable modifications to the environment with broad and sometimes severe impacts on water quality and aquatic natural resources. In this study, the impacts of land use practices on water quality were estimated during the dry and wet seasons in Ruiru and Ndarugu Rivers, Kenya using remote sensing, geographic information systems and statistical techniques. A total of 12 sampling sites associated with three different land use types (forest, agriculture and urban) were selected. All water quality parameters were measured in situ in two dry seasons and two wet seasons and subjected to Kruskal Wallis statistical analyses. Significant variations were seen in water quality parameters between land use types. Higher temperatures were associated with urban dominated sub-basins, while dissolved oxygen was highest in forest sites. Turbidity was highest in agricultural sites and lowest in forested sites, but pH did not differ significantly across all sites. Seasonal impacts were recorded for most water quality parameters tested in all land use types, with agriculture and urban land use showing stronger impacts on water quality in the wet season than in the dry season. This study indicates that both agricultural and urban land use are key factors that affect water quality change. Land-use specific water conservation measures should be enhanced to limit both point and non-point sources of pollution in the study area.
Current understanding of the distribution of vegetation and large mammalian herbivores (LMH) is based on a combination of biogeographic studies and highly controlled field experiments, but a more complete understanding of these patterns requires study of their natural co‐occurrence patterns at intermediate spatial scales. The study was conducted in the 120‐ha Mpala Forest Global Earth Observatory (ForestGEO) plot, Kenya. We examined differences in herbaceous plant communities and habitat use by LMH among three topographic habitats with distinct soil types, namely steep slopes, valley and plateau. Each pair of habitats differed in plant and animal composition. The steep slopes and plateau respectively had ≥1‐fold higher percentage herbaceous cover than the valley, whereas the steep slopes and valley had >1.5‐fold greater grass species richness and diversity than the plateau. The activity of LMH was ≥1.7‐fold higher in the valley than the steep slopes and plateau, reflecting a positive relationship between LMH activity index and richness and diversity of grass species. Results indicate that fine‐scale variation in topography and soil are associated with both the distribution of herbaceous vegetation and LMH, suggesting a need to account for local habitat characteristics when examining the distributions of plants, animals, and plant‐herbivore interactions in natural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.