Purpose Many radiomics features were originally developed for non-medical imaging applications and therefore original assumptions may need to be reexamined. In this study, we investigated the impact of slice thickness and pixel spacing (or pixel size) on radiomics features extracted from Computed Tomography (CT) phantom images acquired with different scanners as well as different acquisition and reconstruction parameters. The dependence of CT texture features on gray level discretization was also evaluated. Methods and Materials A texture phantom composed of 10 different cartridges of different materials was scanned on eight different CT scanners from three different manufacturers. The images were reconstructed for various slice thicknesses. For each slice thickness, the reconstruction Field Of View (FOV) was varied to render pixel sizes ranging from 0.39 to 0.98 mm. A fixed spherical region of interest (ROI) was contoured on the images of the shredded rubber cartridge and the 3D printed, 20% fill, acrylonitrile butadiene styrene plastic cartridge (ABS20) for all phantom imaging sets. Radiomics features were extracted from the ROIs using an in-house program. Features categories were: shape (10), intensity (16), GLCM (24), GLZSM (11), GLRLM (11), and NGTDM (5), fractal dimensions (8) and first order wavelets (128), for a total of 213 features. Voxel size resampling was performed to investigate the usefulness of extracting features using a suitably chosen voxel size. Acquired phantom image sets were resampled to a voxel size of 1 × 1 × 2 mm3 using linear interpolation. Image features were therefore extracted from resampled and original data sets and the absolute value of the percent coefficient of variation (%COV) for each feature was calculated. Based on %COV values, features were classified in 3 groups: 1) features with large variations before and after resampling (%COV > 50); 2) features with diminished variation (%COV < 30) after resampling; and 3) features that had originally moderate variation (%COV < 50%) and were negligibly affected by resampling. Group 2 features were further studied by modifying feature definitions to include voxel size. Original and voxel-size normalized features were used for interscanner comparisons. A subsequent analysis investigated feature dependency on gray level discretization by extracting 51 texture features from ROIs from each of the 10 different phantom cartridges using 16, 32, 64, 128 and 256 gray levels. Results Out of the 213 features extracted, 150 were reproducible across voxel sizes, 42 improved significantly (%COV < 30, Group 2) after resampling, and 21 had large variations before and after resampling (Group 1). Ten features improved significantly after definition modification effectively removed their voxel size dependency. Interscanner comparison indicated that feature variability among scanners nearly vanished for 8 of these 10 features. Furthermore, 17 out of 51 texture features were found to be dependent on the number of gray levels. These features were redef...
Even for a well-commissioned TPS, comparison metrics show better agreement on average to MGDR than to TPS on the arbitrary-shaped measurable "patient." The method requires no more accelerator time than standard QA, while producing more clinically relevant information. Validation in a heterogeneous thoracic phantom is under way, as is the ultimate application of 4D MGDR to virtual motion studies.
Radiomic features are potential imaging biomarkers for therapy response assessment in oncology. However, the robustness of features with respect to imaging parameters is not well established. Previously identified potential imaging biomarkers were found to be intrinsically dependent on voxel size and number of gray levels (GLs) in a recent texture phantom investigation. Here, we validate the voxel size and GL in-phantom normalizations in lung tumors. Eighteen patients with non-small cell lung cancer of varying tumor volumes were analyzed. To compare with patient data, phantom scans were acquired on eight different scanners. Twenty four previously identified features were extracted from lung tumors. The Spearman rank (rs) and interclass correlation coefficient (ICC) were used as metrics. Eight out of 10 features showed high (rs > 0.9) and low (rs < 0.5) correlations with number of voxels before and after normalizations, respectively. Likewise, texture features were unstable (ICC < 0.6) and highly stable (ICC > 0.8) before and after GL normalizations, respectively. We conclude that voxel size and GL normalizations derived from a texture phantom study also apply to lung tumors. This study highlights the importance and utility of investigating the robustness of radiomic features with respect to CT imaging parameters in radiomic phantoms.
Radiomics is being explored for potential applications in radiation therapy. How various imaging protocols affect quantitative image features is currently a highly active area of research. To assess the variability of image features derived from conventional [three-dimensional (3D)] and respiratory-gated (RG) positron emission tomography (PET)/computed tomography (CT) images of lung cancer patients, image features were computed from 23 lung cancer patients. Both protocols for each patient were acquired during the same imaging session. PET tumor volumes were segmented using an adaptive technique which accounted for background. CT tumor volumes were delineated with a commercial segmentation tool. Using RG PET images, the tumor center of mass motion, length, and rotation were calculated. Fifty-six image features were extracted from all images consisting of shape descriptors, first-order features, and second-order texture features. Overall, 26.6% and 26.2% of total features demonstrated less than 5% difference between 3D and RG protocols for CT and PET, respectively. Between 10 RG phases in PET, 53.4% of features demonstrated percent differences less than 5%. The features with least variability for PET were sphericity, spherical disproportion, entropy (first and second order), sum entropy, information measure of correlation 2, Short Run Emphasis (SRE), Long Run Emphasis (LRE), and Run Percentage (RPC); and those for CT were minimum intensity, mean intensity, Root Mean Square (RMS), Short Run Emphasis (SRE), and RPC. Quantitative analysis using a 3D acquisition versus RG acquisition (to reduce the effects of motion) provided notably different image feature values. This study suggests that the variability between 3D and RG features is mainly due to the impact of respiratory motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.