Background: Pigeonpea is a multipurpose food legume that contributes to food security in Benin. However, its production declined and some landraces are being threatened with disappearance. For establishment of conservation and breeding programs previous ethnobotanical surveys on pigeonpea were done in Benin but restricted to south and central regions. Knowing that pigeonpea is also grown in northern Benin, and that the varieties cultivated in this region can show agronomic performances, it is therefore important to evaluate the diversity of this legume in this region. However, an exhaustive documentation of pigeonpea diversity grown in Benin Republic are necessary for effective breeding and conservation programs. Therefore, this study aimed to document genetic diversity of pigeonpea, across the agro-ecological zones of Benin Republic for its promotion and valorization. Methods: 500 producers of pigeonpea belonging to thirteen sociolinguistic groups were selected through 50 villages. Data were collected using methods and tools of participatory research appraisal. Folk nomenclatures, taxonomy of pigeonpea and seed system were investigated. The distribution and extent of pigeonpea landraces were evaluated using Four Square Analysis method. A comparative analysis of pigeonpea uses categories, production systems, pigeonpea production constraints, famers’ preference criteria and participative evaluation for existing landraces across agro-ecological zones was done. Result: Folk nomenclature and taxonomy were mainly based on seed coat colour and size. Seven pigeonpea use category were recorded including sacrifice, grain processing and fertilization. The results showed that pigeonpea seed system is informal. Based on seed characteristics, fifteen landraces were recorded with seven new landraces. The Sudano-Guinean zone contained the highest number (11) of landraces. The average number of landraces per village was 2.7. A high rate of landraces threatened with disappearance was observed across the ecological zones. Ten constraints are known affecting pigeonpea production in Benin with pests and diseases as the most important in all agro-ecological zones. This study revealed that pigeonpea cultivation is increasing in the Sudanian zone. Varieties to be produced must be selected on the basis of 11 criteria among them precocity and resistance to pests and diseases, in the three ecological zones and adaptability to any type of soil in the Sudanian zone were the most important. The participatory evaluation revealed the existence of a few performing cultivars. Conclusions: Our results show that to implement a pigeonpea genetic conservation program in Benin, it would be necessary to take into account the diversity, production constraints and criteria of varietal preference, which varied according to agro-ecological zones. In situ and ex situ conservation strategies are important to preserve pigeonpea landraces. Morphological and molecular characterizations of identified cultivars are highly recommended to help select suitable varieties for breeding programs.
Background: Pigeonpea is a multipurpose food legume crop that contributes to food security in the Republic of Benin. For the establishment of conservation and breeding programs, previous ethnobotanical surveys on pigeonpea were done in Benin but restricted to south and central regions. In previous years, pigeonpea landraces were introduced in northern Benin for soil fertility management; it is therefore important to evaluate the diversity in this legume in this region. Exhaustive documentation of pigeonpea diversity grown in the Republic of Benin will be necessary for effective breeding and conservation programs. Therefore, the aim of this study was to document genetic diversity of pigeonpea, across the agro-ecological zones of the Republic of Benin for its promotion and valorization. Methods: A total of 500 pigeonpea farmers representing 13 sociolinguistic groups were selected from 50 villages. The data were collected using methods and tools of participatory research appraisal. Folk nomenclatures, taxonomy of pigeonpea and seed system were investigated. The distribution and extent of pigeonpea landraces were evaluated using the Four Square Analysis method. A comparative analysis of pigeonpea use categories production systems, production constraints, famers' preference criteria, and participative evaluation for existing landraces across agro-ecological zones was done.
Genetic diversity studies provide important details on target trait availability and its variability, for the success of breeding programs. In this study, GBS approach was used to reveal a new structuration of genetic diversity and population structure of pigeonpea in Benin. We used a total of 688 high-quality Single Nucleotide Polymorphism markers for a total of 44 pigeonpea genotypes. The distribution of SNP markers on the 11 chromosomes ranged from 14 on chromosome 5 to 133 on chromosome 2. The Polymorphism Information Content and gene diversity values were 0.30 and 0.34 respectively. The analysis of population structure revealed four clear subpopulations. The Weighted Neighbor Joining tree agreed with structure analyses by grouping the 44 genotypes into four clusters. The PCoA revealed that genotypes from subpopulations 1, 2 and 3 intermixed among themselves. The Analysis of Molecular Variance showed 7% of the total variation among genotypes while the rest of variation (93%) was within genotypes from subpopulations indicating a high gene exchange (Nm = 7.13) and low genetic differentiation (PhiPT = 0.07) between subpopulations. Subpopulation 2 presented the highest mean values of number of different alleles (Na = 1.57), number of loci with private alleles (Pa = 0.11) and the percentage of polymorphic loci (P = 57.12%). We discuss our findings and demonstrate how the genetic diversity and the population structure of this specie can be used through the Genome Wide Association Studies and Marker-Assisted Selection to enhance genetic gain in pigeonpea breeding programs in Benin.
Background: Pigeonpea is a multipurpose food legume that contributes to food security in Benin. However, its production declined and some landraces are being threatened of disappearance. Previous investigations on pigeonpea in Benin have been restricted to South and Central Benin. Therefore, pigeonpea diversity in northern is still unknown. This study aimed to have a better knowledge of pigeonpea genetic diversity, for its promotion and valorization.Methods: 500 producers of pigeonpea belonging to thirteen sociolinguistic groups were selected through 50 villages. Data were collected using methods and tools of participatory research appraisal. Folk nomenclatures, taxonomy of pigeonpea and seed system were investigated. The distribution and extent of pigeonpea landraces were evaluated using Four Square Analysis method. A comparative analysis of pigeonpea uses categories, production systems, pigeonpea production constraints, famers’ preference criteria and participative evaluation for existing landraces across agro-ecological zones was done.Result: Folk nomenclature and taxonomy were mainly based on seed coat colour and size colour. Seven pigeonpea uses category were recorded including sacrifice, grain processing and fertilization. The results showed that pigeonpea seed system is informal. Based on seed characteristics, fifteen landraces were recorded with seven new landraces. A high rate of landraces threatened of disappearance was observed across the ecological zones. Ten constraints are known affecting pigeonpea production in Benin with pests and diseases as the most important in all agro-ecological zones. This study revealed that pigeonpea cultivation is increasing in the Sudanian zone. Landraces to be produced must be selected on the basis of 11 criteria among them precocity and resistance to pests and diseases, in the three ecological zones and adaptability to any type of soil in the Sudanian zone were the most important. The participatory evaluation revealed the existence of a few performing landraces.Conclusions: The development of performing varieties is important to enhance pigeonpea production in Benin. Morphological and molecular characterizations of identified landrace are highly recommended to help select suitable varieties for breeding programs. In situ and ex situ conservation strategies are important to preserve landraces threatened of disappearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.