Elucidating protein kinase signaling pathways is an important but challenging problem in cell biology. Phosphoproteomics has been used to identify many phosphorylation sites, however the spatial context of these sites within the cell is mostly unknown, making it difficult to reconstruct signalling pathways. To address this problem an in vivo proximity capturing workflow was developed, consisting of proximity biotinylation followed by protein cross-linking (XL-BioID). This was applied to protein kinases of the Leishmania kinetochore, leading to the discovery of a novel essential kinetochore protein, KKT26. XL-BioID enabled the quantification of proximal phosphosites at the kinetochore through the cell cycle, allowing the phosphorylation state of the kinetochore to be followed during assembly. A specific inhibitor of kinetochore protein kinases KKT10/KKT19 was used to show that XL-BioID provides a spatially focussed view of protein kinase inhibition, identifying 16 inhibitor-responsive proximal phosphosites, including 3 on KKT2, demonstrating the potential of this approach for discovery of in vivo kinase signalling pathways.
Leishmania are unicellular parasites that cause human and animal disease. Alongside other organisms in kinetoplastida, they have evolved an unusual genome architecture that requires all RNA polymerase II transcribed genes to be expressed constitutively, with transcriptional start regions denoted by histone variants and histone lysine acetylation. However, the way these chromatin marks are interpreted by the cell is not understood. Seven predicted bromodomain factors (BDF1-7), the reader modules for acetyl-lysine, were identified across Leishmania genomes. Using L. mexicana as a model, Cas9-driven gene deletions indicate that BDF1-5 are essential for promastigote survival, whilst DiCre inducible gene deletion of the dual bromodomain factor BDF5 identified it to be essential for both promastigotes and amastigotes. ChIP-seq assessment of BDF5s genomic distribution revealed it as highly enriched at transcriptional start sites. Using an optimised proximity proteomic and phosphoproteomic technique, XL-BioID, we defined the BDF5-proximal environment to be enriched for other bromodomain factors, histone acetyltransferase 2, and proteins essential for transcriptional activity and RNA processing. Inducible deletion of BDF5, led to a disruption of pol II transcriptional activity and global defects in gene expression. Our results indicate the requirement of Leishmania to interpret histone acetylation marks for normal levels of gene expression and thus cellular viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.