A layered two-dimensional superconducting material 2H-NbSe is used to build a van der Waals heterostructure, where a proximity-coupled superconducting order can be induced in the interfacing materials. Vertically stacked NbSe-graphene-NbSe is fabricated using van der Waals interlayer coupling, producing defect-free contacts with a high interfacial transparency. The atomically thin graphene layer allows the formation of a highly coherent proximity Josephson coupling between the two NbSe flakes. The temperature dependence of the junction critical current (I) reveals short and ballistic Josephson coupling characteristics that agree with theoretical prediction. The strong Josephson coupling is confirmed by a large junction critical current density of 1.6 × 10 A/cm, multiple Andreev reflections in the subgap structure of the differential conductance, and a magnetic-field modulation of I. This is the first demonstration of strongly proximity-coupled Josephson junctions with extremely clean interfaces in a dry-transfer-stacked van der Waals heterostructure.
Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N–S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N–S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene–superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene–S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.