We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail.In the later situation we also present a simple framework for establishing the existence of invariant measures when the usual approach relying on the Krylov-Bogolyubov procedure and compactness fails.
We establish the existence, uniqueness and attraction properties of an ergodic invariant measure for the Boussinesq Equations in the presence of a degenerate stochastic forcing acting only in the temperature equation and only at the largest spatial scales. The central challenge is to establish time asymptotic smoothing properties of the Markovian dynamics corresponding to this system. Towards this aim we encounter a Lie bracket structure in the associated vector fields with a complicated dependence on solutions. This leads us to develop a novel Hörmander-type condition for infinite-dimensional systems. Demonstrating the sufficiency of this condition requires new techniques for the spectral analysis of the Malliavin covariance matrix.
Abstract. We prove invariance of the Gibbs measure for the (gauge transformed) periodic quartic gKdV. The Gibbs measure is supported on H s (T) for s < 1 2 , and the quartic gKdV is analytically ill-posed in this range. In order to consider the flow in the support of the Gibbs measure, we combine a probabilistic argument and the second iteration and construct local-in-time solutions to the (gauge transformed) quartic gKdV almost surely in the support of the Gibbs measure. Then, we use Bourgain's idea to extend these local solutions to global solutions, and prove the invariance of the Gibbs measure under the flow. Finally, Inverting the gauge, we construct almost sure global solutions to the (ungauged) quartic gKdV below H 1 2 (T).
We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number P r > 0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin-Doering [CD96] can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.
Abstract. We consider the generalized KdV equations on the circle. In particular, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure. In handling a nonlinearity of an arbitrary high degree, we make use of the Hermite polynomials and the white noise functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.