Abstract. Endothelial deposition of the complement split product C4d is an established marker of antibody-mediated acute renal allograft rejection. A contribution of alloantibody-dependent immune reactions to chronic rejection is under discussion. In this study, the association of immunohistochemically detected endothelial C4d deposition in peritubular capillaries (PTC) with morphologic features of chronic renal allograft injury was investigated in a large study cohort. C4d deposits in PTC were detected in 73 (34%) of 213 late allograft biopsies performed in 213 patients more than 12 mo after transplantation (median, 4.9 yr) because of chronic allograft dysfunction. Endothelial C4d deposition was found to be associated with chronic transplant glomerulopathy (CG) (P Ͻ 0.0001), with basement membrane multilayering in PTC (P ϭ 0.01), and with an accumulation of mononuclear inflammatory cells in PTC (P Ͻ 0,001). Furthermore, C4d deposits in PTC (in biopsies with normal glomerular morphology) were associated with development of CG in follow-up biopsies. Other morphologic features of chronic allograft nephropathy (with exception of tubular atrophy) were not associated with C4d deposits in PTC. Analyses of previous and follow-up biopsies revealed that C4d deposits may occur de novo and may also disappear at any time after transplantation. In conclusion, the data suggest that complement activation in renal microvasculature, indicating humoral alloreactivity, contributes to chronic rejection characterized by chronic transplant glomerulopathy and basement membrane multilayering in PTC.
ObjectiveTo develop and validate an integrative system to predict long term kidney allograft failure.DesignInternational cohort study.SettingThree cohorts including kidney transplant recipients from 10 academic medical centres from Europe and the United States.ParticipantsDerivation cohort: 4000 consecutive kidney recipients prospectively recruited in four French centres between 2005 and 2014. Validation cohorts: 2129 kidney recipients from three centres in Europe and 1428 from three centres in North America, recruited between 2002 and 2014. Additional validation in three randomised controlled trials (NCT01079143, EudraCT 2007-003213-13, and NCT01873157).Main outcome measureAllograft failure (return to dialysis or pre-emptive retransplantation). 32 candidate prognostic factors for kidney allograft survival were assessed.ResultsAmong the 7557 kidney transplant recipients included, 1067 (14.1%) allografts failed after a median post-transplant follow-up time of 7.12 (interquartile range 3.51-8.77) years. In the derivation cohort, eight functional, histological, and immunological prognostic factors were independently associated with allograft failure and were then combined into a risk prediction score (iBox). This score showed accurate calibration and discrimination (C index 0.81, 95% confidence interval 0.79 to 0.83). The performance of the iBox was also confirmed in the validation cohorts from Europe (C index 0.81, 0.78 to 0.84) and the US (0.80, 0.76 to 0.84). The iBox system showed accuracy when assessed at different times of evaluation post-transplant, was validated in different clinical scenarios including type of immunosuppressive regimen used and response to rejection therapy, and outperformed previous risk prediction scores as well as a risk score based solely on functional parameters including estimated glomerular filtration rate and proteinuria. Finally, the accuracy of the iBox risk score in predicting long term allograft loss was confirmed in the three randomised controlled trials.ConclusionAn integrative, accurate, and readily implementable risk prediction score for kidney allograft failure has been developed, which shows generalisability across centres worldwide and common clinical scenarios. The iBox risk prediction score may help to guide monitoring of patients and further improve the design and development of a valid and early surrogate endpoint for clinical trials.Trial registrationClinicaltrials.gov NCT03474003.
Cytokines are critical in regulating unresponsiveness versus immunity towards enteric antigens derived from the intestinal flora and ingested food. There is increasing evidence that butyrate, a major metabolite of intestinal bacteria and crucial energy source for gut epithelial cells, also possesses anti-inflammatory properties. Its influence on cytokine production, however, is not established. Here, we report that butyrate strongly inhibits interleukin-12 (IL-12) production by suppression of both IL-12p35 and IL-12p40 mRNA accumulation, but massively enhances IL-10 secretion in Staphylococcus aureus cell-stimulated human monocytes. The effect of butyrate on IL-12 production was irreversible upon the addition of neutralizing antibodies to IL-10 or transforming growth factor b1 and of indomethacin. In anti-CD3-stimulated peripheral blood mononuclear cells, butyrate enhanced IL-10 and IL-4 secretion but reduced the release of IL-2 and interferon-g. The latter effect was in part a result of suppressed IL-12 production but also a result of inhibition of IL-12 receptor expression on T cells. These data demonstrate a novel anti-inflammatory property of butyrate that may have broad implications for the regulation of immune responses in vivo and could be exploited as new therapeutic approach in inflammatory conditions.
Focal segmental glomerulosclerosis (FSGS) is a frequent and severe glomerular disease characterized by destabilization of podocyte foot processes. We report that transgenic expression of the microRNA miR-193a in mice rapidly induces FSGS with extensive podocyte foot process effacement. Mechanistically, miR-193a inhibits the expression of the Wilms' tumor protein (WT1), a transcription factor and master regulator of podocyte differentiation and homeostasis. Decreased expression levels of WT1 lead to downregulation of its target genes PODXL (podocalyxin) and NPHS1 (nephrin), as well as several other genes crucial for the architecture of podocytes, initiating a catastrophic collapse of the entire podocyte-stabilizing system. We found upregulation of miR-193a in isolated glomeruli from individuals with FSGS compared to normal kidneys or individuals with other glomerular diseases. Thus, upregulation of miR-193a provides a new pathogenic mechanism for FSGS and is a potential therapeutic target.
Our data indicate that endothelial C4d deposition is associated with inferior graft outcome. We provide evidence that this immunohistochemical finding and its clinical impact are not associated with morphological signs of cellular rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.