Plastics are known sources of chemical exposure and few, prominent plastic-associated chemicals, such as bisphenol A and phthalates, have been thoroughly studied. However, a comprehensive characterization of the complex chemical mixtures present in plastics is missing. In this study, we benchmark plastic consumer products, covering eight major polymer types, according to their toxicological and chemical signatures using in vitro bioassays and nontarget high-resolution mass spectrometry. Most (74%) of the 34 plastic extracts contained chemicals triggering at least one end point, including baseline toxicity (62%), oxidative stress (41%), cytotoxicity (32%), estrogenicity (12%), and antiandrogenicity (27%). In total, we detected 1411 features, tentatively identified 260, including monomers, additives, and nonintentionally added substances, and prioritized 27 chemicals. Extracts of polyvinyl chloride (PVC) and polyurethane (PUR) induced the highest toxicity, whereas polyethylene terephthalate (PET) and high-density polyethylene (HDPE) caused no or low toxicity. High baseline toxicity was detected in all “bioplastics” made of polylactic acid (PLA). The toxicities of low-density polyethylene (LDPE), polystyrene (PS), and polypropylene (PP) varied. Our study demonstrates that consumer plastics contain compounds that are toxic in vitro but remain largely unidentified. Since the risk of unknown compounds cannot be assessed, this poses a challenge to manufacturers, public health authorities, and researchers alike. However, we also demonstrate that products not inducing toxicity are already on the market.
An instrumental method for the evaluation of olive oil quality was developed. Twenty-one relevant aroma active compounds were quantified in 95 olive oil samples of different quality by headspace solid phase microextraction (HS-SPME) and dynamic headspace coupled to GC-MS. On the basis of these stable isotope dilution assay results, statistical evaluation by partial least-squares discriminant analysis (PLS-DA) was performed. Important variables were the odor activity values of ethyl isobutanoate, ethyl 2-methylbutanoate, 3-methylbutanol, butyric acid, E,E-2,4-decadienal, hexanoic acid, guaiacol, 2-phenylethanol, and the sum of the odor activity values of Z-3-hexenal, E-2-hexenal, Z-3-hexenyl acetate, and Z-3-hexenol. Classification performed with these variables predicted 88% of the olive oils' quality correctly. Additionally, the aroma compounds, which are characteristic for some off-flavors, were dissolved in refined plant oil. Sensory evaluation of these models demonstrated that the off-flavors rancid, fusty, and vinegary could be successfully simulated by a limited number of odorants. KEYWORDS: olive oil, sensory quality, stable isotope dilution assay, headspace solid phase microextraction, partial least-squares discriminant analysisThe rising olive oil consumption outside the Mediterranean area can be explained due to the health benefits attributed to olive oil, basically by its specific odor and taste characteristics. 1It is therefore not surprising that the quality of olive oil is determined primarily by its sensory properties. Sensory evaluation is based on the so-called "Panel Test" developed by the International Olive Council.2 This procedure, if performed by well-trained panelists, gives good and reproducible results, which are comparable with those of other panels. However, there are still disadvantages in the sensory quality evaluation. These are (i) the lack of stable and standardized reference oils for the different off-flavors and (ii) the large number of panelists that is needed for statistically confirmed results. 3Several instrumental methods have been developed as alternatives to sensory methods to evaluate the quality of olive oil. Many authors identified the important aroma active compounds in olive oil even in those with different off-flavors. Two review papers summarize the scientific findings.4,5 Headspace solid phase microextraction (HS-SPME) was found as the best method for the aroma analysis of olive oil. 6 However, this method only gives exact quantification results if recovery rates and response factors are determined for each compound, which was not carried out in most studies. These disadvantages of using external calibration can be circumvented by application of stable isotope dilution assay.7 Exact quantification data are needed for the calculation of odor activity values and therefore for the assessment how important an aroma active compound is for the overall flavor. Correlation of sensory data with quantification results was made by some authors, 8,9 but not on the b...
N-acetyl-4-aminophenol (acetaminophen/paracetamol, NA4AP) is one of the most commonly used over-the-counter analgesic and antipyretic drugs. Recent studies have reported anti-androgenic effects of NA4AP in vitro and possible associations between intrauterine exposure to NA4AP and the development of male reproductive disorders in humans. NA4AP is also a major metabolite of aniline (phenylamine), representing 75-86% of the aniline dose excreted in urine. Aniline is an important large-volume intermediate in several industrial processes. Besides individuals in various occupational settings with aniline exposure, the general population is also known to be ubiquitously exposed to aniline. In this article, we provide an overview of the recent literature concerning the intake of NA4AP during pregnancy and the possible anti-androgenic effects of NA4AP as well as literature concerning its known metabolic precursor aniline. We also present new research data, including the first human biomonitoring data on NA4AP excretion in urine, showing ubiquitous NA4AP body burdens in the general population at a wide range of concentrations. We found a small but significant impact of smoking on urinary NA4AP concentrations. We further present preliminary data on NA4AP excretion after therapeutic acetaminophen use, after aniline exposure in an occupational setting, and during a controlled fasting study (excluding oral exposure to both aniline and acetaminophen). Our findings indicate exposure to aniline (or aniline-releasing substances) as well as nutrition (next to the direct use of acetaminophen as medication) as possible sources of internal body burdens of NA4AP.Reproduction (2014) 147 R105-R117
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.