The International Council for Harmonisation revised the E14 guideline through the questions and answers process to allow concentration-QTc (C-QTc) modeling to be used as the primary analysis for assessing the QTc interval prolongation risk of new drugs. A well-designed and conducted QTc assessment based on C-QTc modeling in early phase 1 studies can be an alternative approach to a thorough QT study for some drugs to reliably exclude clinically relevant QTc effects. This white paper provides recommendations on how to plan and conduct a definitive QTc assessment of a drug using C-QTc modeling in early phase clinical pharmacology and thorough QT studies. Topics included are: important study design features in a phase 1 study; modeling objectives and approach; exploratory plots; the pre-specified linear mixed effects model; general principles for model development and evaluation; and expectations for modeling analysis plans and reports. The recommendations are based on current best modeling practices, scientific literature and personal experiences of the authors. These recommendations are expected to evolve as their implementation during drug development provides additional data and with advances in analytical methodology.
The QT effects of five "QT-positive" and one negative drug were tested to evaluate whether exposure-response analysis can detect QT effects in a small study with healthy subjects. Each drug was given to nine subjects (six for placebo) in two dose levels; positive drugs were chosen to cause 10 to 12 ms and 15 to 20 ms QTcF prolongation. The slope of the concentration/ΔQTc effect was significantly positive for ondansetron, quinine, dolasetron, moxifloxacin, and dofetilide. For the lower dose, an effect above 10 ms could not be excluded, i.e., the upper bound of the confidence interval for the predicted mean ΔΔQTcF effect was above 10 ms. For the negative drug, levocetirizine, a ΔΔQTcF effect above 10 ms was excluded at 6-fold the therapeutic dose. The study provides evidence that robust QT assessment in early-phase clinical studies can replace the thorough QT study.
The effect of food was investigated under conditions of a thorough QT (TQT) study and with confirmation of assay sensitivity by the use of a positive control (400 mg of moxifloxacin). Fifty-five healthy subjects were randomized to treatment and a sequence of fasted and fed baseline electrocardiography days. Subjects received standard breakfast 30 to 10 minutes prior to dosing. Measurement of QT interval was performed automatically with subsequent manual onscreen overreading using electronic calipers. A profound increase in heart rate of 9.4 bpm was observed in the fed condition compared with the fasted condition at 1.5 hours after dose with a corresponding shortening of QT (27 milliseconds); (baseline data). When corrected, QTcF interval was shortened significantly with the maximal effect observed at 2 hours after dose of 8.2 (95% confidence interval, 6-10) milliseconds. A concurrent shortening of the PR interval with a maximum value of 5.6 milliseconds was also observed. The findings of this study demonstrate that food alters the QT-RR relationship and shortens QTc and PR for at least 4 hours after a carbohydrate-rich meal. The findings are of regulatory interest as this study shows that normal physiological causes can shorten QTc significantly and that it could be used as a method to demonstrate assay sensitivity.
A collaboration between the Consortium for Innovation and Quality in Pharmaceutical Development and the Cardiac Safety Research Consortium has been formed to design a clinical study in healthy subjects demonstrating that the thorough QT (TQT) study can be replaced by robust ECG monitoring and exposure-response (ER) analysis of data generated from First-in-Man single ascending dose (SAD) studies. Six marketed drugs with well-characterized QTc effects were identified in discussions with FDA; five have caused QT prolongation above the threshold of regulatory concern. Twenty healthy subjects will be enrolled in a randomized, placebo-controlled study designed with the intent to have similar power to exclude small QTc effects as a SAD study. Two doses (low and high) of each drug will be given on separate, consecutive days to 9 subjects. Six subjects will receive placebo. Data will be analyzed using linear mixed-effects ER models. Criteria for QT-positive drugs will be the demonstration of an upper bound (UB) of the 2-sided 90% confidence interval (CI) of the projected QTc effect at the peak plasma level of the lower dose above the threshold of regulatory concern (currently 10 ms) and a positive slope of ER relationship. The criterion for QT-negative drug will be an UB of the CI of the projected QTc effect of the higher dose <10 ms. It is expected that a successful
For drugs with a QTc effect of around 12-14 ms, exposure response analysis applied to First-in-Man studies with careful ECG assessment can be used to replace the through QT study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.