SUMMARY
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a novel delivery method in humanized mice, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rγ−/− mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ PBMC. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naïve T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
The angiotensin converting enzyme 2 (ACE2) has been identified as a receptor for the severe acute respiratory syndrome associated coronavirus (SARS-CoV). Here we show that ACE2 expression on cell lines correlates with susceptibility to SARS-CoV S-driven infection, suggesting that ACE2 is a major receptor for SARS-CoV. The soluble ectodomain of ACE2 specifically abrogated S-mediated infection and might therefore be exploited for the generation of inhibitors. Deletion of a major portion of the cytoplasmic domain of ACE2 had no effect on S-driven infection, indicating that this domain is not important for receptor function. Our results point to a central role of ACE2 in SARS-CoV infection and suggest a minor contribution of the cytoplasmic domain to receptor function.
Some chromosomal translocations involved in the origin of leukemias and lymphomas are due to malfunctions of the recombinatorial machinery of immunoglobulin and Tcell receptor-genes. This mechanism has also been proposed for translocations t(4;11)(q21;q23), which are regularly associated with acute pro-B cell leukemias in early childhood. Here, reciprocal chromosomal breakpoints in primary biopsy material of fourteen t(4;11)-leukemia patients were analysed. In all cases, duplications, deletions and inversions of less than a few hundred nucleotides indicative of malfunctioning DNA repair mechanisms were observed. We concluded that these translocation events were initiated by several DNA strand breaks on both participating chromosomes and subsequent DNA repair by`error-prone-repair' mechanisms, but not by the action of recombinases of the immune system.
Summary. The AF-4 gene on human chromosome 4q21 is involved in reciprocal translocations to the ALL-1 gene on chromosome 11q23, which are associated with acute lymphoblastic leukaemias. A set of recombinant phage carrying genomic fragments for the coding region and flanking sequences of the AF-4 gene were isolated. Phage inserts were assembled into four contigs with 21 exons, and an intron phase map was produced enabling the interpretation of translocation-generated fusion proteins. The gene contains two alternative first exons, 1a and 1b, both including a translation initiation codon. The translocation breakpoint cluster region is flanked by exons 3 and 6 and two different polyadenylation signals were identified. Polyclonal antisera directed against three different portions of the AF-4 protein were produced and used to detect a 116 kD protein in cellular extracts of human B-lymphoblastoid and proB cell lines. In mitogen-stimulated human peripheral blood mononuclear cells the AF-4 antigen was predominantly located in the nucleus. The AF-4 gene is a member of the AF-4, LAF-4 and FMR-2 gene family. The members of this family encode serine-proline-rich proteins with properties of nuclear transcription factors. Comparison of AF-4 protein coding sequences with the LAF-4 and FMR-2 sequences revealed five highly conserved domains of potential functional relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.