An untargeted screening strategy for the detection of biotransformation products of xenobiotics using stable isotopic labelling (SIL) and liquid chromatography–high resolution mass spectrometry (LC-HRMS) is reported. The organism of interest is treated with a mixture of labelled and non-labelled precursor and samples are analysed by LC-HRMS. Raw data are processed with the recently developed MetExtract software for the automated extraction of corresponding peak pairs. The SIL-assisted approach is exemplified by the metabolisation of the Fusarium mycotoxin deoxynivalenol (DON) in planta. Flowering ears were inoculated with 100 μg of a 1 + 1 (v/v) mixture of non-labelled and fully labelled DON. Subsequent sample preparation, LC-HRMS measurements and data processing revealed a total of 57 corresponding peak pairs, which originated from ten metabolites. Besides the known DON and DON-3-glucoside, which were confirmed by measurement of authentic standards, eight further DON-biotransformation products were found by the untargeted screening approach. Based on a mass deviation of less than ±5 ppm and MS/MS measurements, one of these products was annotated as DON-glutathione (GSH) conjugate, which is described here for the first time for wheat. Our data further suggest that two DON-GSH-related metabolites, the processing products DON-S-cysteine and DON-S-cysteinyl-glycine and five unknown DON conjugates were formed in planta. Future MS/MS measurements shall reveal the molecular structures of the detected conjugates in more detail.
Very often, the accuracy of quantitative analytical methods for the determination of mycotoxins by liquid chromatography (LC)-mass spectrometry (MS) and LC-MS/MS is limited by matrix effects during the ionization process in the MS source. Stable isotope labeled standards are best suited to correct for matrix effects and to improve both the trueness and the precision of analytical methods employing LC-MS and LC-MS/MS. This paper describes the successful use of fully 13C isotope labeled deoxynivalenol [(13C15)DON] as an internal standard (IS) for the accurate determination of DON in maize and wheat by LC electrospray ionization MS/MS. To show the full potential of (13C15)DON as IS, maize and wheat extracts were analyzed without further cleanup. Subsequent to calibration for the LC-MS end determination, DON was quantified in matrix reference materials (wheat and maize). Without consideration of the IS, apparent recoveries of DON were 29+/-6% (n=7) for wheat and 37+/-5% (n=7) for maize. However, the determination of DON in the reference materials yielded 95+/-3% (wheat) and 99+/-3% (maize) when (13C15)DON was used as an IS for data evaluation.
In this paper, the structure and the identity of fully 13C-substituted T-2 toxin were confirmed using high-resolution mass spectrometry, 1H-NMR, 13C-NMR, tandem mass spectrometry and HPLC-DAD. The purity of this compound was estimated to be at least 98.8% according to UV data. The isotopic distribution of (13C(24)) T-2 toxin indicated a total isotopic enrichment of 98.2 +/- 1.0 atom% 13C, and the application of different MS measurement modes revealed the MS/MS fragmentation pattern of T-2 toxin. Furthermore, a stable isotope dilution mass spectrometry method for the quantification of T-2 toxin was developed using (13C(24)) T-2 toxin as internal standard. The method was evaluated with and without conventional clean-up and validated for maize and oats. Both cereals showed strong matrix enhancement effects, which could be compensated for through the application of the isotope-substituted internal standard.
Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-d-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.
Pentahydroxyscirpene, a novel trichothecene-type
compound, was
isolated from Fusarium-inoculated rice. The structure
of pentahydroxyscirpene was elucidated by 1D and 2D NMR spectroscopy
and X-ray single-crystal diffraction. The conformation in solution
was determined by NOESY experiments supported by quantum chemical
calculations. In vitro toxicity tests showed that
pentahydroxyscirpene inhibits protein synthesis as do other trichothecenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.