The simulation of electrochemical reaction dynamics from first principles remains challenging, since over the course of an elementary step, an electron is either consumed or produced by the electrode. For example, the hydrogen evolution reaction begins with a simple proton discharge to a metal surface, but with conventional electronic structure methods, the simulated potential, which is manifested as the metal’s workfunction, varies over the course of the simulation as the electron is consumed in the new metal–hydrogen bond. Here, we present a simple approach to allow the direct control of the electrochemical potential via charging of the electrode surface. This is achieved by changing the total number of electrons in the self-consistent cycle, while enforcing charge neutrality through the introduction of a jellium counter charge dispersed in an implicit solvent region above the slab. We observe that the excess electrons localize selectively at the metal’s reactive surface and that the metal workfunction responds nearly linearly to the variation in electronic count. This linear response allows for control of the potential in simulations with a minimal computational penalty compared to standard electronic structure calculations. This scheme can be straightforwardly implemented with common electronic structure calculators (density functional theory in the present work), and we find this method to be compatible with the commonly used computational hydrogen electrode model, which we expect will make it useful in the construction of potential-dependent free-energy diagrams in electrochemistry. We apply this approach to the proton-deposition (Volmer) step on both Au(111) and Pt(111) surfaces and show that we can reliably control the simulated electrode potential and thus assess the potential dependence of the initial, transition, and final states. Our method allows us to directly assess the location along the reaction pathway with the greatest amount of charge transfer, which we find to correspond well with the reaction barrier, indicating this reaction is a concerted proton–electron transfer. Interestingly, we show that the Pt electrode has not only a more favorable equilibrium energy with adsorbed hydrogen but also a lower intrinsic barrier under thermoneutral conditions.
Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G∼0). However, many candidate non-precious metal catalysts bind hydrogen with similar strengths, but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt's high activity. Surprisingly, we find that the G∼0 hydrogen atoms are kinetically inert, and that the kinetically active hydrogen atoms have ∆G's much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverages can uniquely explain Pt's strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses, and suggests true design criteria for non-precious alternatives.
Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These molecular intrinsic properties are usually addressed by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1000 at voltage stimuli of less than 1.0 V. DFT calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarised ground state unique to the Mo centre. This situation opens an additional slow and incoherent hopping channel for transport, triggering a transient charging effect of the entire molecule and a strong hysteresis with unprecedented high low-to-high current ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.