The continuous evolution and spread of virulent forms of the soybean cyst nematode (SCN) driven by the environment and anthropogenic intervention is a serious threat to the soybean production worldwide, including China. Especially in China, the implemented measures to control SCN are insufficient for sustainable agricultural development yet. We summarized our knowledge about the spread and spatial distribution of SCN in China and the virulence diversity in the main soybean growing areas. To reveal the genetic relatedness and diversity of SCN populations, we re-sequenced 53 SCN genomes from the Huang-Huai Valleys, one of the two main soybean growing areas in China. We identified spreading patterns linked to the local agroecosystems and topographies. Moreover, we disclosed the first evidence for the selection of complex virulence in the field even under low selection pressure in an example from North Shanxi. SCN is present in all soybean growing areas in China but SCN susceptible cultivars are still largely grown indicating that SCN-related damage and financial loss have not received the attention they deserve yet. To prevent increasing yield losses and to improve the acceptance of resistant cultivars by the growers, we emphasized that it is time to accelerate SCN resistance breeding, planting resistant cultivars to a larger extent, and to support farmers to implement a wider crop rotation for sustainable development of the soybean production in China.
Soybean cyst nematode (SCN, Heterodera glycines, HG) is one of the severe pests in plant-parasitic nematodes, which impairs root development and causes severe losses in soybean production worldwide. Breeding SCN-resistant cultivars is an important measure for securing harvests without affecting the environment, as can be done with pesticides. The majority of genetic resources for plant pest resistances are found in wild or closely related species which are often difficult to use in breeding due to crossing barriers or close linkage with unfavorable agronomic traits. In this study, 12 soybean cultivars were evaluated for their marker haplotype at the rhg1 and Rhg4 SCN resistance loci and their SCN resistance tested against multiple races in environmentally controlled bioassays. The results showed that all 12 cultivars displayed Peking-type resistance marker haplotypes and all of them proved to be resistant to multiple SCN races. These cultivars provide potential for improving H. glycines resistance of soybean as donor parent in breeding and can contribute to reduce SCN field populations as part of a sustainable agriculture management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.