Cereal-based beverages contain a complex mixture of various polymeric macromolecules including polysaccharides, peptides, and polyphenols. The molar mass of polymers and their degradation products affect different technological and especially sensory parameters of beverages. Asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS) and refractive index detection (dRI) or UV detection (UV) is a technique for structure and molar mass distribution analysis of macromolecules commonly used for pure compound solutions. The objective of this study was to develop a systematic approach for identifying the polymer classes in an AF4//MALS/dRI/UV fractogram of the complex matrix in beer, a yeast-fermented cereal-based beverage. Assignment of fractogram fractions to polymer substance classes was achieved by targeted precipitations, enzymatic hydrolysis, and alignments with purified polymer standards. Corresponding effects on dRI and UV signals were evaluated according to the detector's sensitivities. Using these techniques, the AF4 fractogram of beer was classified into different fractions: (1) the low molar mass fraction was assigned to proteinaceous molecules with different degrees of glycosylation, (2) the middle molar mass fraction was attributed to protein-polyphenol complexes with a coelution of non-starch polysaccharides, and (3) the high molar mass fraction was identified as a mixture of the cell wall polysaccharides (i.e., β-glucan and arabinoxylan) with a low content of polysaccharide-protein association. In addition, dextrins derived from incomplete starch hydrolysis were identified in all fractions and over the complete molar mass range. The ability to assess the components of an AF4 fractogram is beneficial for the targeted design and evaluation of polymers in fermented cereal-based beverages and for controlling and monitoring quality parameters.
The sensory attribute palate fullness of cereal-based beverages was shown to be affected by polymeric compounds and their macromolecular profile. During malting, the enzymatic degradation of polymers is technologically controlled by the malting parameters, namely the degree of steeping, germination time, and germination temperature. The macromolecular profile of a fermented cereal-based beverage consists of non-fermentable substance classes. Therefore, the macromolecular composition of a final beverage is originally dominated by the raw material, if conventional production methods are used. We investigated the influence of different cytolytic and proteolytic malt modifications on the macromolecular profile of lactic acid-fermented cereal-based beverages (a strain was selected that did not produce exopolysaccharides) and their resultant effect on the sensory perception of the attributes of palate fullness and mouthfeel. Asymmetrical-flow field-flow fractionation coupled with multiangle light-scattering detection and refractive index detection is an analytical tool for macromolecular characterization to indicate differences in the macromolecular profile, molar mass, and molar mass distribution. The beverages produced using different modified malts demonstrated a considerable variation in their final composition, particularly in the composition of their macromolecular compounds. A higher level of malt modification led to a decrease in the high-molar-mass fraction and a consequent shift toward fractions with a lower molar mass. Malts produced from barley with increased crude protein contents resulted in a greater range within the macromolecular profile. The variation of germination time significantly influenced the number average molar mass, the total refractive index detection (dRI) peak area, and the high-molar-mass fraction, which contained cell wall polysaccharides (60-1200 kDa). The perception of the intensity of palate fullness was significantly correlated with specific macromolecular fractions, which were influenced by the malting parameter degree of steeping and the resultant modification. The perception of the mouthfeel descriptor watery varied significantly for different crude protein contents. Our results are beneficial for a targeted design of beverage composition based on the macromolecular profile by an improved selection of raw materials and malting technology.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Ende Mai 1920 sandte mir Geh-Rat Kolle 500 Röhrchen Neosilbersalvarsan in Stärken von 0,2 bis 0,5 mit der Bitte, dieses neue Salvarsanpräparat auf seine Wirksamkeit, seine Verträglichkeit und seine 1-leilerfolge hin' zu studieren. Den gesamme'ten Erfahrungen liegt ein Material von P200 Patienten aler Stadien der Sypkiiiis und eine Zeit von 13 Monaten zugrunde. Behandelt wurden 95 Fälle im primären, nacE! Wassermann (und meist auçh Sachs-Georgi) noch negativen Stadium, bei denen die Infektion höchstens 3 Wochen zurücklag. 52 Fälle mit bereits positivem Wassermann (+ ++) bei denen außer dem Primäraffekt noch keinerlei Haut-oder Schleimhauterscheinungen nachweisbar waren.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.