Resource and energy efficiency are essential in process synthesis of chemical plants as they combine economic with ecological benefits. The two main targets of the process synthesis problem-mass and energy flux optimization-are typically split into two steps: single unit optimization and subsequent energy integration preventing the identification of the globally optimal solution. This article presents a single-step procedure for resource-efficient process synthesis through simultaneous heat and mass flux optimization called FluxMax approach which is demonstrated for the production of hydrogen cyanide (HCN). The impact of simultaneous heat integration on the optimal process structure is demonstrated and two resource-optimal processes for HCN production are identified consisting of a combination of different reactor and recycling strategies reducing total variable cost by 68 %. For convex objective functions, the globally most resource-efficient process is identified highlighting the potential of the FluxMax approach for site planning and retrofitting of existing plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.