In the current work, we present an investigation of the electronic and defect structure in (TiO2) rutile monocrystals by virtue of time differential perturbed angular γ-γ correlation spectroscopy. Studies were performed using 111mCd, implanted at ISOLDE/CERN complemented with diffusion studies and density functional theory calculations. Hyperfine field parameters have been probed as a function of temperature between 298 K and 873 K. The results demonstrate that 111mCd/Cd implanted rutile has two local environments. The first environment is characterized with parameters attributed to Cd localized at the cationic site which goes relatively along with a specific case where a charged supercell Cd:Ti(2e−) is in the scope. The origin of the second fraction could be rising from the subsurface regions where according to a tracer diffusion study the major part of implant is bounded featuring different diffusion mechanisms. Performed ab initio calculations suggest that the disruptive surface environment could contain apical or equatorial vacancies near the probe, inducing high electric field gradients for the second fraction. Current results seem to differ from those obtained before with different methods of probing (Ag/Cd and In/Cd).
We provide an overview of time-differential perturbed angular correlation (TDPAC) measurements of ferroic and multiferroic materials. Here, we explore chalcogenide spinels, lead titanate, lead zirconate, and bismuth ferrite, describing the use of TDPAC experiments to probe the physics of localized defects and the various mechanisms that govern electronic and magnetic interactions, the coupling of the associated degrees of freedom, and the structural, charge, and orbital correlations for these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.